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Abstract

Vision-language models (VLMs) discriminatively pre-trained with contrastive
image-text matching losses such as P(match|text, image) have been criticized for
lacking compositional understanding. This means they might output similar scores
even if the original caption is rearranged into a different semantic statement. To
address this, we propose to use the Visual Generative Pre-Training Score (Visu-
alGPTScore) of P(text|image), a multimodal generative score that captures the
likelihood of a text caption conditioned on an image using an image-conditioned
language model. Contrary to the belief that VLMs are mere bag-of-words models,
our off-the-shelf VisualGPTScore demonstrates top-tier performance on recently
proposed image-text retrieval benchmarks like ARO and Crepe that assess com-
positional reasoning. Furthermore, we factorize VisualGPTScore into a product
of the marginal P(text) and the Pointwise Mutual Information (PMI). This helps
to (a) diagnose datasets with strong language bias, and (b) debias results on other
benchmarks like Winoground using an information-theoretic framework. Visual-
GPTScore provides valuable insights and serves as a strong baseline for future
evaluation of visio-linguistic compositionality.

1 Introduction

Latest large language models (LLMs) like ChatGPT [9] and GPT-4 [10]] have reached human-level
performance on tasks requiring complex compositional reasoning [[11, 112,13} [14}[15]. Although pre-
trained on massive-scale web data, contemporary vision-language models (VLMs) such as CLIP [[1]
fail to encode compositional relationships and struggle with recently proposed image-text retrieval
benchmarks [3} 18} [16} [17} [18] that humans find relatively trivial. For instance, ARO [3] reveals
that state-of-the-art VLMs trained with image-text contrastive (ITC) or image-text matching (ITM)
objectives exhibit bag-of-words behaviors and cannot distinguish between nuanced phrases with
shuffled words such as "horse eating grass" and "grass eating horse".

Visual Generative Pre-Training Score (our approach). To challenge the prevailing belief that
VLMs are bag-of-words models, we draw inspiration from the exceptional compositional reasoning
capabilities of generative pre-trained LLMs, like GPT [10} (19, 20], which models the entire sequence
likelihood via next-token prediction [[19,21,122]]. We leverage the popular image-conditioned language
model BLIP [6} 7], pre-trained with both discriminative (ITC and ITM) and generative (next-token
prediction) objectives. We show that Visual Generative Pre-Training Score, ie., the conditional
likelihood of the text given an image P(text|image), significantly surpasses prior art on a suite of
challenging compositionality benchmarks, such as ARO [3]], Crepe [4], VL-CheckList [16], where
discriminative approaches like ITCScore and ITMScore have failed.
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Figure 1: Generative score for enhanced evaluation of multimodal compositionality. Fig-
ure (a) illustrates mainstream VLMs evaluated with discriminative scores [1, 2] that model
P(match|text, image) with contrastive or matching losses. Such approaches exhibit bag-of-words
behaviors, failing to generalize to compositional reasoning benchmarks [3 14} 5]. Figure (b) illustrates
Visual Generative Pre-Training Score (VisualGPTScore) based on VLMs [6, [7] trained with genera-
tive language modelling loss. Contrary to the prevailing belief that VLMs are mere bag-of-words
models [3]], VisualGPTScore demonstrates top-tier performance on recently proposed image-text
retrieval benchmarks that assesses compositional reasoning (section 3). Moreover, by factorizing
Visual GPTScore as a product of marginal probability (P(text)) and Pointwise Mutual Information
(PMI) (section 4), we (a) diagnose datasets with strong language bias (section 3, and (b) improve
on other retrieval benchmarks like Winoground [8]] (section 6). VisualGPTScore offers insights for
future evaluation of visio-linguistic compositionality.

Have we closed the compositionality gap? Although Visual GPTScore sometimes achieves near-
perfect performance on certain benchmarks, we do not claim that it bridges the compositionality
gap. To analyze recent benchmarks, we propose to factorize VisualGPTScore into a product of
the unimodal marginal P(text) and Pointwise Mutual Information (PMI), which is widely adopted
in information retrieval tasks [23] 24| 25| 26]. Through an approximation of P(text) using Monte
Carlo sampling, our experiments expose that recent benchmarks can be partially addressed with only
the language model P(text), indicating a significant design flaw. For instance, many image-to-text
retrieval datasets [3| 4] create challenging negative captions by drastically modifying the original ones,
without taking into account whether these altered captions still make sense. This bias in language
allows the negatives to be easily dismissed without even looking at the image; we show that text-only
solutions, such as a "blind" version of VisualGPTScore that conditions on random gaussian noise
images, can exceed previous best results achieved by discriminative approaches using VLMs.

A systematic approach for diagnosing language bias and improving on retrieval tasks. We
present a method to adjust the individual components of VisualGPTScore (P(text) and PMI) by
tuning a scalar value « € [0, 1]. This framework repurposes VisualGPTScore as a diagnostic tool to
examine the extent of language bias in different datasets. Additionally, it mirrors the classic PMI*
method [27], which controls the strength of debiasing. We show that it enhances performance on
both compositionality benchmarks like Winoground [[8]] and classic retrieval tasks like COCO [28]].

Summary. We present an image-text retrieval method grounded on a multimodal generative score:

* Our VisualGPTScore significantly outperforms existing solutions on recent visio-linguistic
compositionality benchmarks and challenges the prevailing notion that VLMs are bag-of-words
models [3, 4} [8]]. Notably, our approach does not entail additional training or computational
costs and can rival the performance of discriminative methods [6} 7, |29]] on most datasets.

* We present an information-theoretic factorization of Visual GPTScore to address bias in
retrieval tasks and to diagnose datasets that exhibit strong language bias. To this end, we
leverage a content-free technique to reduce the sampling cost of Monte Carlo method for
estimating marginal probabilities. We hope our framework provides insights for future
evaluations of visio-linguistic compositionality and generative scores in retrieval.

2 Related Works

Vision-language modelling. State-of-the-art VLMs like CLIP [1]], ALBEF [2], and FLIP [30]
are pre-trained on web-scale image-text datasets [31, 132] using discriminative objectives such as



image-text contrastive (ITC) [1} 130,33} 34]] and image-text matching (ITM) [2} 16} [7, 135} 136} 137, 138]
loss. These pre-trained models exhibit robust zero-shot [39, 40, 41]] and few-shot [42] 43| 44]]
performance on traditional discriminative tasks [28| 45 |46], often on par with fully-supervised
models. Some recent models [40, 47], like Flamingo [48] and BLIP [6} [7]], incorporate generative
language modelling objectives (next-token prediction [21}[22]) primarily for downstream tasks such
as image captioning [28}49]] and visual-question answering [S0} 51} [52].

Visio-linguistic compositionality. While VLMs have been successfully applied to diverse tasks
requiring visio-linguistic reasoning, such as text-to-image generation [53} 54, 155]], benchmarks like
Winoground [8], ARO [3]], and Crepe [4] cast doubt on their compositional reasoning capabilities.
These benchmarks, however, only evaluate discriminative scores (ITCScore and ITMScore) for image-
text retrieval. Similarly, we find that all concurrent works focus on discriminative scores of VLMs for
compositionality assessment. For example, SyViC [56] discriminatively finetunes VLMs on million-
scale synthetic images to enhance spatial, attributive, and relation understanding. Other approaches
include (a) training on standard image-text datasets [28| 46] with curated negative captions [S7, 58|,
59], such as NegCLIP [3], and (b) using carefully-designed regularizers or architectures [S,[17,160,/61].
In contrast, we demonstrate that an off-the-shelf multimodal generative score can rival previous
discriminative approaches on the same benchmarks without additional finetuning.

Generative pre-training and scoring. A plethora of studies suggest that vision models trained
with discriminative objectives lack incentives to learn structure information [3} 162} |63]]. Similarly,
early LLMs pre-trained and evaluated with discriminative approaches, such as BERT [64] and
RoBERTza [65], have also been criticized as bag-of-words models insensitive to word order [66) 67,
681 169]]. Conversely, generative pre-trained LLMs [10L |19, 20]] demonstrate exceptional compositional
understanding while pre-trained solely with a next-token prediction [[19} 21} 22] loss. Furthermore,
generative scores of language models [[10, [70, [71]] have flexible usage in downstream tasks, eg.,
text evaluation [72] with GPTScore [7/3] and reranking [74] with pointwise mutual information
(PMI [24} 25, [26]]). In this work, we also factorize VisualGPTScore as a product of marginal
probability and PMI, in order to examine the contribution of each part in different retrieval benchmarks.
Specifically, we perform Monte Carlo sampling of our multimodal generative scores to estimate
unimodal marginal probabilities (P(text)). Our analysis uncovers that a surprisingly large number of
recent visio-linguistic datasets [3} 4} [16] can be partially addressed with solutions that focus solely on
P(text), completely disregarding the visual modality.

Leveraging language prior in visio-linguistic benchmarks. Visio-linguistic benchmarks, such
as image-captioning [75| [76]] and visual-question-answering [51 152} [77] 78} [79, [80, 81]], can be
shortcutted by exploiting imbalanced unimodal (image or language) prior, often without the need
to consider the other modality. Recent compositionality benchmarks are not exempt from this
issue as their datasets’ language bias closely reflects real-world texts; for instance, sentences with
grammatical errors are less likely to be positive. To prevent degenerate unimodal solutions, we
advocate for benchmarks like Winoground [8, [17]], whose dataset creation and evaluation protocol
ensures uniform marginal probabilities among samples.

3 Visual Generative Pre-Training Score

In this section, we formalize our approach of Visual Generative Pre-Training Score and evaluate it
on recently proposed visio-linguistic benchmarks of image-to-text and text-to-image retrieval tasks.

Prior discriminative approaches (Figure T}a). The majority of mainstream VLMs are pre-trained
and evaluated with P(match|image, caption), typically modelled via ITCScore and ITMScore. ITC-
Score [1}133]] employs a dual-encoder architecture that separately encodes images and texts, which
is then followed by a contrastive objective between positive and negative image-text pairs. ITM-
Score [2,16]], on the other hand, jointly encodes an image-text pair using a fusion encoder, followed
by a binary classification objective indicating whether the pair matches. However, without additional
fine-tuning [3} 15 59]], such approaches often fail to generalize to compositional reasoning tasks.

Preliminaries. For the scope of this paper, we assume an image-conditioned language model trained
with next-token prediction loss [20} 21} 22]]. This encompasses VLMs that have been pre-trained
with language generation (captioning) objectives, such as BLIP [6, [7], CoCa [40], GIT [47]], and
Flamingo [48]. We adopt the open-sourced BLIP models pre-trained on public image-text corpus
with both discriminative (ITC and ITM) and generative (next token prediction) objectives for ablation.



VisualGPTScore (Figure 1}b). The likelihood of a text t = {¢1,%2, - , ¢, } conditioned on an
image i can be naturally factorized as a product of conditional probabilities:

P(t]i) = [ ] P(telt<s.i) (1)
k=1

In our implementation, we calculate a weighted sum of the log-likelihoods of ¢ at each token position
k and apply an exponent to cancel the log:

VisualGPTScore(t, i) := e2k=1 W 108(P(tklt<i.D)) 2)

We set w,, = % following prior works [72, [73]. To condition on an input image, BLIP uses a
multimodal casual self-attention mask [6, (7] in its image-grounded text decoder, ie., each text token
can attend to all its preceding vision and text tokens. While text generation requires sequential token-
by-token prediction, we emphasize that Eq. 2 can be computed in parallel at all positions through
cross-entropy losses between output logits and ground truth text tokens. As such, our generative
Visual GPTScore incurs the same computational cost as the state-of-the-art ITMScore [2, 16, [7, [29],
which uses a bi-directional attention masking transformer to encode an image-text pair.

Benchmarks and evaluation protocols. We strictly adhere to prior works when reporting results on
each benchmark. Notably, ARO [3], Crepe [4], and VL-CheckList [[L6] focus on image-to-text (I-to-T)
retrieval, reporting Recall@1 (R@1) as each image has a single positive caption and multiple negative
captions. For ARO [3]], we report on four datasets: VG-Relation, VG-Attribution, COCO-Order, and
Flickr30k-Order. For Crepe [4]], we use the entire productivity set (with complexities ranging from 4
to 12) and report on three datasets: AtomFoils, Negate, and Swap. For VL-CheckList [16], we report
on the Relation dataset by averaging the performance of action and spatial tag. For Winoground [§]]
and EqBen [17], where each sample contains two pairs of image and text, we follow the original
protocol to report (a) text score for image-to-text (I-to-T) retrieval, and (b) image score for text-to-
image (T-to-I) retrieval. For example, the text score gains 1 point if, for both images, the matching
caption score is higher than the non-matching caption score. The calculation for the image score
is similar. For Winoground, we report on both the entire testset (400 samples) and the No-Tag
subset (171 samples) [[18], which tests compositional reasoning rather than other capabilities, e.g.,
detecting small and out-of-focus objects. We report on the public valset of EqBen [[17] because it
contains ground-truth labels for computing text and image score respectively. We refer readers to
Appendix for more details and visualization of random samples. Our open-sourced code can
be found at linK'| We include comprehensive reports, such as group scores, fine-grained performance
on subtags for Winoground [18]], and BLIP-2 results in Appendix.

Performance on Compositionality Benchmarks. In[Table I} we show that VisualGPTScore, based
on the BLIP model (pre-trained on LAION-114M [31]] with ViT-L image encoder), achieves state-of-
the-art results on the majority of recent visio-linguistic benchmarks without any finetuning. Notably,
Visual GPTScore outperforms the best discriminative approaches (including BLIP’s ITMScore) on
all I-to-T retrieval tasks of ARO, Crepe, and VL-CheckList. It also rivals on T-to-I retrieval tasks of
Winoground and EqBen, although it falls short on their corresponding I-to-T retrieval tasks, a point
which we will address in the following section.

4 Information-Theoretic Factorization of VisualGPTScore

To comprehend the performance discrepancy across benchmarks, we observe that Winoground [8]]
and EqBen [[17] follow distinct creation procedures compared to other compositionality datasets.
ARO [3]], Crepe [4], VL-CheckList [16] construct hard negative captions for each image by modifying
the ground truth caption. As a result, these negative captions do not have any matching images in the
dataset. On the other hand, both Winoground and EqBen include two image-text pairs in a test case,
which means each caption (as well as image) has a equal chance of being positive. We propose that
Winoground and EqBen pose a greater challenge due to their curation and evaluation protocol which
enforces a balanced marginal distribution [52]. We now formally analyze this discrepancy through
an information-theoretic factorization of VisualGPTScore.

Notation. Given an image i and a text t, P(i,t) represents the joint probability of a matching
image-text pair (i,t) being sampled from the distribution. Likewise, P (i) and P(t) models the

"https://github.com/linzhiqiu/visual_gpt_score/
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Mode Metric Benchmark Dataset Random ITMScore VisualGPTScore‘ SOTA Method

‘ Name Score

VG-relation 50.0 587 89.1 (130.4) 81.0

VG-Auribution 50,0 90.3 953 (+50) |\ o 71.0

ARO [3] COCO-Order 20.0 45.1 99.4 (+543) | NeeCLIPIEL g7

Recall @1 Flickr30K-Order 20,0 513 99.5 (+48.) 86.0
Atom-Foils 16.7 29.5 73.2( ) 28.5

Lto-T Crepe [ Negate 16.7 255 79.6 (+54.1) | ALBEF 2 487
Swap 16.7 207 78.0 (+57.4) 20.4

VL-CheckList [16] _Relation 50.0 677 90.8(+23 1) | SynBLIP 3Gl 702

Winoground [§ Al 250 358 27.0(-88) 285

Text Score e No-Tag [18] 25.0 419 349 (- 7.0) CLIP [ 26.2

EqBen [17) Val-Set 250 26.0 96(-164) | 263

. All 25.0 15.8 205 (+5.7) 105

Ttol Image Score imoground I8l g0 o 18] 250 215 285 (+ 7.0) ‘ CLIP T 8.72
EqBen [17 Val-Set 25.0 203 261(:55) | 19.6

Table 1: Performance on diverse visio-linguistic benchmarks. We compare SOTA discrimina-
tive approaches with our proposed VisualGPTScore (Eq. [2)), implemented on the open-sourced
BLIP [6] model pre-trained on LAION-114M [31]. VisualGPTScore significantly outperforms the
best discriminative approaches (such as ITMScore) across a variety of I-to-T retrieval benchmarks
including ARO [3]], Crepe [4], and VL-CheckList [16]. On COCO-Order and Flickr30K-Order, Visu-
alGPTScore achieves near-perfect performance. It also shows superior T-to-I retrieval performance
on Winoground [8]] and EqBen [[17]]. We improve the respective I-to-T performance via debiasing
in We report the performance of the largest CLIP [[1] variant (ViT-L/14) on Winoground
and EqBen since we do not have access to SOTA pre-trained models [17]. For Winoground, we also
report performance on the No-Tag [18] subset that focuses solely on compositional reasoning.

(unimodal) marginal probability that a randomly sampled pair contains the image i or the text t.
Due to the non-negligible distribution shift between the train and test datasets, we denote these
probabilities with Py,.q:, and P, respectively.

Visual GPTScore as a product of P(text) and PMI. As VisualGPTScore models the image-
conditioned likelihood of text, we propose to decompose it as a product of marginal probability (of
text) and Point-wise Mutual Information (PMI [23}52]):

VisualGPTScore(t,i) := Piy.qin(t|i) 3)
= Ptrain(t) * pmiptmm (t, i) (@]
where

. P(ti)  P(th)  P(lY)

Pmir(bY) = 5P m ~ Py - P )
PMI is an information-theoretic measure that quantifies the association between an image and a
text [83} 84} 185]]. It measures how much more (or less) likely the image-text pair co-occurs than if
the two were independent. Eq. E]has found applications in diverse sequence-to-sequence modelling
tasks [24, 25| 26] as a retrieval (reranking) objective. Compared to the conditional likelihood
P(t|i), PMI reduces the learned bias for preferring "common" texts with high marginal probabilities
P(t) [24, 25, 26]. We now try to estimate P(t) and show how this factorization (Eq. E]) can expose
the contributions of each part across benchmarks.

Estimating marginal probabilities using Monte Carlo sampling (oracle approach). We can
estimate Pj,.qi, (t) from an image-conditioned language model (P4, (t]1)) via Monte Carlo sam-
pling [86], by drawing n images from the train distribution:

1< 1<
Pirin(t) = - E Pirain(tlix) = - E Visual GPTScore(t, i) (6)
k=1 k=1

Reducing sampling cost with content-free (gaussian noise) images (our approach). The Monte
Carlo method outlined above, while straightforward, can be computationally expensive to achieve
robust estimates. To address this, we draw inspiration from [87], which uses a content-free "null" text
prompt (such as "N/A") to calculate the probability of a text from LLMs, ie., P(t) ~ P(t|"N/A").



LLMs (P (t)) VisualGPTScore

Benchmark Dataset SOTA
BART FLAN-T5 OPT P(t|null)

VG-Relation 81.0 811 844 84.7 87.6 Dataset Visual GPTScore PMI
ARO VG-Attribution 710 73.6 76.5 79.8 80.7 —

COCO-Order 91.0  95.0 980 979 986 P(tli) L

Flickr30K-Order ~ 86.0  95.2 98.2 98.6 99.1 n

Winoground 27.0 33.0 ( )

Atom-Foils 285 388 43.0 53.3 554 EqBen 9.6 19.8 ( )
Crepe Negate 487 444 13.6 5.0 60.8

Swap 204 533 69.5 72.7 69.7
VL-CheckList  Relation 702 451 493 51.0 75.9

(a) R@1 of P(t) on ARO/Crepe/VL-CheckList (b) Text Score of PMI on Winoground/EqBen

Table 2: Examining the contribution of P(t) and PMI on different I-to-T benchmarks. Table (a)
shows the performance of pure LLMs (Pr, 1,5/ (t)) and VisualGPTScore with 3 null (gaussian noise)
images (Pirain (t) = Pirqin(t|null)) with mean of 0.4 and std of 0.25 on ARO/Crepe/VL-CheckList.
We bold all results that are better than SOTA discriminative approaches (third column in gray color).
Surprisingly, “blind" approaches that ignore all visual evidence can outperform SOTA, though still
lower than Visual GPTScore (in color). Note that such approaches can only achieve a 0 text
score on Winoground and EqBen, because it must match the correct caption for both images in a test
case. Table (b) shov;/s that on such balanced benchmarks, replacing the VisualGPTScore with PMI

(by multiplying W) significantly improves performance, correcting the bias of VisualGPTScore

towards more "common" texts regardless of the image.

Our approach requires much fewer gaussian images (as few as 3) as "null" images to compute Eq. [6]
We find this method to be less computationally demanding and just as effective as sampling thousands
of images from trainset (LAION [31]]). Sampling details are in Appendix [section 8]

P(t) plays a key role in addressing ARO/Crepe/VL-CheckList (Table 2}a). We posit that some
I-to-T benchmarks can be partially addressed simply by considering the marginal probabilities of
text. Especially, ARO [3]], Crepe [4]], and VL-CheckList [16] construct hard negative captions by
drastically altering the original captions, often resulting in sentences that lack semantic coherence or
violate grammatical rules. For example, COCO-Order [3]] randomly shuffles all words in a caption,
transforming "two dogs sharing a frisby in their mouth in the snow" into "in dogs the in frisby sharing
two mouth their a snow". Such adversarially constructed negative captions will inherently have low
marginal probabilities in any image-text distributions, or even low probability in real-world text
distributions. As shows, one can achieve impressive performance on these benchmarks by
"blindly" modeling P(t) (without considering any visual evidence) through two simple approaches:

1. Prpa(t): passing captions into a pure LLM (such as BART-base [72], FLAN-T5-XL [[70],
and OPT-2.7B [71]]) to compute a text-only GPTScore [73].

2. Pirqin(t|null): passing both captions and "null" (gaussian noise) images to BLIP to compute
a "blind" version of Visual GPTScore.

Replacing Visual GPTScore with PMI boosts performance on Winoground/Edenb).
We demonstrate that PMI, the "debiased” version of VisualGPTScore via multiplying 55—,
can significantly boost its performance on balanced benchmarks such as Winoground and EqBen.
Intuitively, this debiasing procedure mitigates the tendency of VisualGPTScore to always assign
higher scores (regardless of the image) to more "common" texts (like "the person on top of the world")
compared to less "common" texts (like "the world on top of the person"), since both texts have the

same chance of being positive in Winoground testset.

S Diagnosis of Visio-Linguistic Benchmarks

In this section, we investigate the major discrepancy among various I-to-T retrieval benchmarks: the
shift in P(t) from train to test data. As suggests, different benchmarks may rely more on
certain parts of VisualGPTScore (Piyqn (t) or PMI). Therefore, we repurpose VisualGPTScore as
a diagnostic tool by introducing a tunable alpha « that weighs the contribution of each component,
allowing us to systematically analyze recent visio-linguistic benchmarks.

Optimal I-to-T retrieval objective. To simplify our analysis, we make the assumption that the
conditional P(i[t) stays the same across training and test distributions. In other words, we assume



Scenario 1: Prest(t) = Prrain(t) Scenario 2: P (t) is uniform
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Figure 2: Two hypothetical scenarios of P, (t) across I-to-T retrieval benchmarks. Scenario 1
(Flickr30K-Order [3]]) happens when P (t) follows Py, (t); for instance, the negative captions
are, by construction, less likely to be a real-world caption due to obvious grammatical mistakes.
Scenario 2 (Winoground [8]]) stands for datasets constructed in a balanced manner; for instance,
each caption in Winoground has a matching caption, and thus P (t) is uniformly distributed. For
visualization, we renormalize P;,.;, and P.s; on captions of a single test sample.

that the visual appearance i of a t = "white duck" will be consistent across the train and test
datasets, but the marginal frequency P(t) of the "white duck" textual string may change. Given
an image i, we can rewrite the optimal retrieval objective P;.s:(t|i) via Bayes rule:

Ptest(t|i) XX P(i‘tl)Ptegt(t) (7)
Prain t
= P(it)wptest(t) (8)
Ptest(t)

o VisualGPTScore(t, 1) ©)

Pt’r‘ain (t)

The above derivation suggests that for optimal retrieval, we need access to both Py,.q,(t) and
Pyest(t). Because we can approximate the former via Monte Carlo sampling (or "null" version of
VisualGPTScore), we now consider two scenarios of Py (t) (Figure 2).

Scenario 1: P, (t) is equal to P4y, (t). We assume for all candidate captions of an image i:
Piest(t) = Pirain(t) = Optimal score is VisualGPTScore(t, i). (10)

Benchmarks such as ARO [3], Crepe [4], VL-CheckList [16] likely fall into this category (Eq. @7
as their negative captions are usually adversarially constructed and have much lower marginal
probabilities. In other words, such adversarial negatives rarely occur in natural real-world image-text
pairs, which is also why NegCLIP [3]] and similar approaches [5}, 157,159, 88| train on hard negative
captions generated from original captions or ground-truth scene graphs.

Scenario 2: P;.s:(t) is uniform. In contrast, Winoground-like benchmarks [8] [I'7] ensures that the
marginal probabilities of all captions are uniform across the test-set, since each caption appears twice,

once as a positive and once as a negative (Figure 2)):

VisualGPTScore(t, i)

Piest(t) is uniform. = Optimal score is
Ptrain (t)

=pmip,__(t,i). (11)

Tunable . We introduce a tunable temperature parameter « € [0, 1] to interpolate between the two
scenarios, where o = 0 implies the first and a = 1 implies the second:

Visual GPTScore(t, i)

Ptrain (t)a
(12)

Prest(t) Ptmm(t)l_o‘ = Optimal score is VisualGPTScore,, (t,i) =
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Table 3: a-tuning on I-to-T benchmarks and frequency charts of P;,..;,(t) for both positive
and negative captions. Increasing a from 0 to 1 hurts performance on benchmarks whose marginal
probabilities of positive and negative captions differ. Notably, this usually occurs on datasets whose
negative captions are adverserially constructed, ie., by shuffling words in the positive caption.

Interestingly, the above can be rewritten using the language of PMI* [89]], a well-known variant
of PMI that controls the amount of debiasing [24}, 25 26].

. . Ptrain (t7 i)
VisualGPTScore, (t,i) = : 13
( ) Ptrain(l)Ptrain (t)a ( )
Ptrain (tv i) é o\ - .
o - ,as Py,qin (1) is constant in I-to-T (14)
Ptrain(l)Ptrain (t) ! ( )
1
=pmi},  (t,i), where k = — > 1 (15)

(67

Results of different o’s on I-to-T retrieval benchmarks. We plot the results of o-tuning in [Table 3]
We show side-by-side frequency charts of Py, (t) for positive and negative captions. As « increases
from 0 to 1, we observe that performance decreases the most for datasets like COCO-Order and
Flickr-Order, which are constructed with adversarial negative captions whose P(t) are close to 0 and
can satisfy the first scenario in a trivial fashion.

Implication for multimodal compositionality evaluation. Despite our approach showing encour-
aging results on ARO/Crepe/VL-CheckList, Eq. @ reveals that vanilla VisualGPTScore is biased
towards "common" captions. Moreover, as[Table 2] demonstrates, solutions that ignore images can still
outperform SOTA algorithms trained on carefully-tuned negative samples [3,539]. This makes it hard
to interpret the progress these methods have made in bridging the visio-linguistic compositionality
gap. Notably, “blind" solutions that ignore visual evidence achieve a score of 0 on Winoground
and EqBen. These two datasets enforce that all captions have the same chance of being positive,
reinforcing the lesson learned from previous visio-linguistic benchmarks like balanced VQA-2 [52].



Therefore, we urge future work to construct and evaluate on such balanced benchmarks when testing
visio-linguistic compositionality.

6 Additional Experimental Results

We now present results on Winoground, EqBen, and classic retrieval benchmarks (COCO [28] and
Flickr30k [46]). We also show that a-tuning using a held-out validation set, as per|Equation 12| can
regulate the intensity of debiasing, consistently improving performance on these tasks.

Tuning « through cross validation. We show improved results on Winoground and EqBen using a
validation set to tune for optimal « € [0, 1]. We sample half of the data as validation set to search
for o ,; (using a step size of 0.001) and report the performance on the other half. We repeat this
process 10 times to compute mean and std in [Table 4Fa. We also perform alpha-tuning on classic
I-to-T retrieval tasks of COCO and Flickr30k using the provided validation split. Instead of sampling
gaussian noise images, we directly approximate Py,..;,, (t) by averaging the scores of testset images,

without incurring computational cost.

T-to-I retrieval on COCO/Flickr30k. For completeness, we also report T-to-I performance on these
benchmarks in [Table 4}b, where VisualGPTScore again achieves competitive results, presumably
because T-to-I retrieval is less affected by learned language bias.

VisualGPTScorefs:

Metric Benchmark ITMScore
a=0 a=l A= Uval “val Metric Benchmark ITMScore  VisualGPTScore
Textscore  poicsignd Bl B8den ey ey Wbeo Mo T COCOME  348/790 536/792
q ~2(03) 202 0(0-3) —=2(0.3) +772(0.007) Flickr30k [46] 77.8/93.9 76.8/93.4
R@1/R@5 COCO [28 71.9/90.6 19.7/40.6 46.2/73.1 48.0/74.2 0.819
~  Flickr30k [46 88.8/98.2 34.6/59.0 58.7/88.0 63.6/89.2 0.719
(a) a-tuning on val sets for I-to-T retrieval (b) T-to-I retrieval on COCO/Flickr30k

Table 4: Additional results on retrieval benchmarks. Table (a) shows that grid searching for optimal
alpha on validation sets can significantly improve I-to-T results on test sets of both compositionality
and classic benchmarks. Table (b) shows that Visual GPTScore also obtains favorable results on
classic T-to-I retrieval tasks, potentially because it does not require debiasing for language bias. In
each row, we bold the best result and underline the second best result.

Other ablation studies. We summarize the conclusions of selected ablation studies in the Appendix.
We include retrieval results using BLIP-2 [[7] in Appendix Interestingly, our findings
suggest that simply appending the output tokens of VLMs to frozen LLMs (as done in BLIP-2
FLAN-T5 model) does not always enhance its visio-linguistic reasoning capabilities, while incurring
more computational costs. In fact, it sometimes reduces the performance, possibly due to the strong
language bias introduced by the LLMs. We also compare different Monte Carlo sampling methods in
Appendix [section §] showing that our sampling approaches can achieve strong performance with less
computation overhead compared to sampling LAION (trainset) images.

7 Discussion and Limitations

Summary. Our study shows the efficacy of a generative pre-training score in solving discriminative
tasks that require multimodal compositional reasoning. With the rise of generative pre-training in
recent models like GPT-4 [10], we see VisualGPTScore as a reliable starting point for future tasks.
We also propose an information-theoretic factorization of VisualGPTScore to highlight language bias
in recent visio-linguistic benchmarks and offer a systematic way to debias in common retrieval tasks.

Limitations and future work. Our approach depends on a model pre-trained on noisy web datasets,
which may result in inherited biases [90]. We do not explore fine-tuning techniques due to compu-
tational constraints, but it is possible to enhance I-to-T retrieval performance using hard negative
samples during training, such as with controllable generation [[74},(91]]. Furthermore, our analysis is
based on simplified assumptions. For instance, the model might not accurately represent Py;.qn (t|1),
a phenomenon we examine in Appendix Estimating Py, (t) by sampling gaussian noise
images is potentially imprecise. Future VLMs could directly model P4, (t), or use techniques
like coreset selection [92f] or dataset distillation [93}94] to sample more representative images. Our
debiasing method may also apply to other generative models for tackling discriminative tasks, such
as text-to-image models [53} 193} 96].



Appendix

8 Ablation Studies on o-Tuning

Estimating P(t) via null (gaussian noise) images is more cost-effective. We use Winoground
testset to show that sampling gaussian noise images in order to calculate P(t|null) can be more
efficient than Monte Carlo sampling of LAION (trainset) images. As demonstrated in a
limited number of Gaussian noise images (e.g., 3 or 10) can surpass the results obtained with 1000
LAION images. Moreover, using null images produces less variance in the results.

Sample Size P(t[null) P(t)
aza:est a:est ‘ (X:a;&kest a;‘,kest
3 3595(05) 0.821(()‘012) 3220(16) 0.706([)‘150)
10 3625(04) 0'827(0.016) 3360(09) 0.910(0104)
100 36.350.1y  0.840(0.010) | 34.70(0.6)  0.910(0.039)
)

1000 36.25(0.0)  0.850(0.000) | 35.15(0.5) 0.960(0.033)

Table 5: Comparing sampling of null images (P(t|null)) and trainset images (P (t)). We show
the text score results of a-tuning on Winoground I-to-T retrieval task. We ablate 3/10/100/1000
gaussian noise and LAION samples and report both mean and std using 5 sampling seeds. The
optimal o* € [0, 1] is grid searched on testset via a step size of 0.001. The gaussian noise images are
sampled with a mean calculated from the LAION subset and a fixed std of 0.25.

Details of gaussian noise samples. Unless otherwise specified, the gaussian noise images are
sampled with a mean of 1.0 and a standard deviation of 0.25. By default, we use 100 images for
Winoground, 30 images for EqBen, and 10 images for the rest of the benchmarks. We also fix
the sampling seed in our code to ensure reproducibility. We leave more advanced techniques of
generating null images to future works.

Alternative approach on COCO/Flickr30k: estimating P(t) using testset images. For classic
I-to-I retrieval benchmarks like COCO [28]] and Flickr30k [46]], we can directly average scores of
all candidate images (in the order of thousands) to efficiently approximate P(t) without the need to
sample additional gaussian noise images. This approach incurs no computation overhead as we have
already pre-computed scores between each candidate image and text. We show in that using
testset images indeed results in better performance than sampling 3 null gaussian images.

Visual GPTScorep;
a=1 a=ag g
Testset Images 46.2/73.1 48.0/74.2 0.819

Null Images 24.4/52.6 40.4/66.6 0.600

Testset Images 58.7/88.0 63.6/89.2 0.719

Null Images 27.8/62.2 485/79.0 0.427
Table 6: I-to-T retrieval on COCO/Flickr30k using different sampling methods. Estimating
P(t) by averaging the scores of test set images demonstrates superior performance compared to
sampling additional gaussian noise images. Although this approach doesn’t impose any additional
computational overhead, it assumes access to all candidate images of the benchmark.

Metric Benchmark VisualGPTScore  Sampling Method

COCO [28] 19.7/40.6
R@1/R@5

Flickr30k [46] 34.6/59.0

Tuning o with a validation set. In[Table 7] similar performance trends are observed across validation
and test splits of COCO and Flickr30k I-to-T retrieval benchmarks using the same o € [0, 1].
Furthermore, o, ,, and o, ,; are empirically close. As such, our method can function as a reliable
training-free debiasing method. Future studies may explore fine-tuning methods to further improve
the debiasing performance.
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(c) Alpha-tuning on Flickr Retrieval

Table 7: a-tuning results on both val set and test set for COCO/Flickr30k I-to-T retrieval. We
observe that validation and test performance are strongly correlated while we interpolate @ € [0, 1].

9 Benchmark Details

We include random samples from each benchmark in[Table 8]

Dataset

Image

Positive Caption

Negative Caption(s)

VG-Relation

the bus is to the right of the trees

the trees is to the right of the bus

VG-Attribution

the striped zebra and the large tree

the large zebra and the striped tree

two frisby sharing a mouth in their snow in the dogs
in dogs the in frisby sharing two mouth their a snow
two dogs sharing in a frisby their mouth in snow the
a frisby in the snow two dogs sharing their mouth in

COCO-Order

two dogs sharing a frisby in their mouth in the snow

a white wings spreads its water while in the duck
a white duck the its wings while in water spreads
white a duck spreads its in while the water
while in the spreads its wings water a white duck

Flickr30K-Order a white duck spreads its wings while in the water

microwave in a cupboard, and sink in a kitchen
microwave in a bar, and sink in a kitchen

line in a kitchen, and sink in a kitchen
microwave en, and shower in a kitchen
microwave in a kitchen, and tap in a kitchen

Crepe-AtomFoils microwave in a kitchen, and sink in a kitchen.

A chair is not next to a table, with the back of the chair visible

A chair next to a table, with the back not of air visible

A chair next to a table, with the back of the chair visible

A chair next to a table, with something of the chair visible. There is no back.
There is no chair next to a table, with the back of the chair visible

Crepe-Negate a chair next to a table, with the back of the chair visible.

na b ves with a line next to a tree
ad with a line next to a tree
e with next to a road

road with a line next to a white car

road with a line next to a street

Crepe-Swap

a car driving on a road with a line next to a tree.

a car driving on

VL-CheckList

Relation (spatial) person read book

person carry book

VL-CheckList

Relation (action) sign near boy

sign far from book

a person on top of the world the world on top of a person

‘Winoground

the world on top of a person a person on top of the world

The person is touching the dish which is in front of him/her.  The person is holding the dish which is in front of him/her.

EqBen

The person is holding the dish which is in front of him/her. ~ The person is touching the dish which is in front of him/her.

X

Table 8: Visualization of benchmarks. ARO (VG-Relation/VG-Attribution/COCO-Order/Flickr30K-
Order), Crepe (AtomFoils/Negate/Swap), and VL-CheckList-Relation (spatial/action) are constructed
by generating hard negative captions for an image-text pair. On the other hand, each sample of
Winoground and EqBen contains two image-text pairs. This ensures that unimodal solutions, which
only look at the text (or the image), fail to perform better than random chance.
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10 Is VisualGPTScore a Biased Estimator of P(t|i)?

Retrieval performance on trainset (LAION). This paper is built on the assumption that Visual-
GPTScore is a reliable estimator of P4, (t]|i). However, this simplifying assumption does not
completely hold for the BLIP model we examine. As highlighted in the main paper, VisualGPTScore
tends to assign higher scores to more common texts. We witness this same phenomenon in[Table 9]
where we perform image-text retrieval on random subsets of training set (LAION-114M [6, [31]).

I-to-T Retrieval T-to-1 Retrieval g‘:
Dataset Size — o e
ITMScore VisualGPTScorefy ITMScore  Visual GPTScore @06
a=0 a=1 a=a* o §os
'ﬁf 04 —— Si 100
100 96.0 59.0 940 950 0535 950 97.0 S o3

Size 1000

1000 90.9 37.1 717 857 0.733  92.0 93.1 02 —— Size 2000
2000 87.2 32.8 623 0643 0.840 87.8 89.8 01 —— Size 5000
5000 79.8 25.1 509 541 0727 819 84.4 0700 01 02 03 04 05 05 07 08 08 10
Alpha
(a) Performance on LAION trainset retrieval (b) Alpha-tuning on LAION

Table 9: Retrieval performance on randomly sampled LAION subsets with varied sizes. Table
(a) provides a performance comparison between ITMScore and VisualGPTScore on both I-to-T and
T-to-I retrieval tasks on randomly sampled LAION subsets. VisualGPTScore performs competitively
on T-to-I retrieval. However, when it comes to I-to-T retrieval (with o = 0), performance deteriorates
when the number of candidate texts increases. Nevertheless, debiasing VisualGPTScore with oo = 1,
or better still, grid searching optimal * € [0, 1] with a step size of 0.001, can consistently boost the
results. This experiment suggests that VisualGPTScore shows a bias towards more common texts
even in the (imbalanced) training set. Table (b) presents the performance curves of VisualGPTScore®
on LAION subsets with different sample sizes.

Modelling the language bias in VisualGPTScore. As evidenced in [Table 9] we believe Visual-
GPTScore is biased towards more common texts due to modelling error. To consider this error in our
analysis, we rewrite the VisualGPTScore as:

VisualGPTScore(t, i) := Pirain (t]i) = Prrain (/i) - Prrain(t)?, (16)

where P represents the (biased) model estimate and P represents the true distribution. The model
bias towards common texts is encoded by an unknown parameter /3.

Monte Carlo estimation using P. Because our Monte Carlo sampling method relies on Ptmm(t|i),
it is also a biased estimator of Pyq;p, (t1):

. 1<
Ptrazn = Z Ptrazn t|1k Ptrain (t)1+ﬁ~ (17)

3

Rewriting optimal I-to-T objective with P. We can rewrite as:
P test (t)

Pes tli Praint.i 18
¢ t( |1) o ( |1)Pt7'ain(t) ( )
P . Ptest(t)
= Ptrain(t|l>W (]9)
Piest(t
= VisualGPTScore(t, i)ﬁ (20)
Ptrain (t)

o-tuning with P. Using , we can reformulate a-tuning 1| as follows:

Visual GPTScore(t, 1)
Ptrain (t)a

Prest(t) o Ptmm(t)l_é‘ = Optimal score is VisualGPTScore,, (t,i) =
(2D

where o = T3 + . This implies that even if Py.q,(t) = Piest(t), we still anticipate o = % # 0.

This accounts for why the optimal « is not 0 in[Table 9 It also provides an explanation for the slight
deviation from 0 often observed in the best alpha on ARO/Crepe/VL-CheckList in

12



Implication for vision-language modelling. Our analysis indicates that similar to generative
LLMs [24] 25]], contemporary image-conditioned language models also experience issues related to
imbalanced learning [97]. Potential solutions could be: (a) refined sampling techniques for Monte
Carlo estimation of P(t) such as through coreset selection or dataset distillation, and (b) less biased
modelling of P(t|i) such as through hard negatives mining and controllable generation.

11 Experiments with BLIP-2

We provide a brief overview of BLIP-2 [[7]] and compare its results with BLIP in this section.

BLIP-2 [7] overview. BLIP-2 leverages frozen pre-trained image encoders [98]] and large language
models [70, [71]] to bootstrap vision-language pre-training. It proposes a lightweight Querying
Transformer (Q-Former) that is trained in two stages. Similar to BLIP [[6], Q-Former is a mixture-of-
expert model that can calculate ITC, ITM, and captioning loss given an image-text pair. Additionally,
it introduces a set of trainable query tokens, whose outputs serve as visual soft prompts prepended as
inputs to LLMs. In its first training stage, Q-Former is fine-tuned on the same LAION dataset using
the same objectives (ITC+ITM+captioning) as BLIP. In the second stage, the output query tokens
from Q-Former are fed into a frozen language model (such as FLAN-TS5 [70] or OPT [70]) after a
linear projection trained only with captioning loss. BLIP-2 achieves state-of-the-art performance on
various vision-language tasks with significantly fewer trainable parameters.

BLIP-2 results. We present retrieval performance of the BLIP-2 model that uses ViT-L as the frozen
image encoder. We report results for both the first-stage model (denoted as Q-Former) and the
second-stage model which employs FLAN-TS5 [[70] as the frozen LLM. reveals that neither
using a powerful visual backbone nor coupling Q-Former with a frozen LLM can improve results on
ARO/Crepe/VL-CheckList. We conjecture that (a) the frozen visual backbone is unable to leverage
compositional reasoning capabilities of LLMs, and (b) the frozen LLM contribute a strong language
bias. Similarly, shows that while a stronger visual backbone moderately enhances the
ITMScore on Winoground/EqBen, it does not improve VisualGPTScore. As our findings suggest that
frozen unimodal models does not advance visio-linguistic capabilities of VLMs, future work should
investigate better modelling and training techniques to effectively incorporate the compositional
reasoning capabilities of LLMs into VLMs.

Benchmark Dataset Random w. Q-Former w. Flan-T5
ITC ITM VisualGPT VisualGPT
VG-Relation 50.0 464 672 90.7 89.1
ARO 3] VG-Attribution 50.0 76.0 88.1 94.3 90.9
COCO-Order 20.0 28.5 252 96.8 99.3
Flickr30K-Order 20.0 253 28.6 97.5 99.7
Atom-Foils 16.7 20.8 209 74.7 69.7
Crepe [4] Negate 16.7 134 142 79.1 90.0
Swap 16.7 134 18.0 79.5 79.1
VL-CheckList [16] Relation 50.0 70.5 723 89.9 56.7

Table 10: BLIP-2 on ARO/Crepe/VL-CheckList. Using powerful frozen unimodal models (pre-
trained image encoders and LLMs) does not lead to improved compositionality on these tasks.

I-To-T Retrieval (Text Score) T-To-I Retrieval (Image Score)
Benchmark ~ Model VisualGPT™
ITC IT™M - 121 ITC ITM  VisualGPT
a=0 a=1 a=a* o
BLIP 28.0 358 27.0 330 365 0.836 9.0 158 215

Winoground BLIP2-QFormer 30.0 425 243 293 330 0.882 105 19.0 20.0

BLIP2-FlanT5 253 315 343  0.764 - 19.5
BLIP 209 260 9.6 198 198 0982 203 203 26.1
EqBen (Val) BLIP2-QFormer 32.1 362 122 219 222 0969 234 284 26.6
BLIP2-FlanT5 - 85 220 220 1.000 - 20.9

Table 11: BLIP-2 on Winoground/EqBen. While BLIP-2’s frozen image encoder moderately boosts
the performance of ITMScore, it does not benefit VisualGPTScore even after attaching the visual
prompts to a frozen LLM. We posit that better modelling and training techniques are required to
leverage the compositional reasoning capabilities of LLMs in VLMs.
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12 Additional Reports

Computational resources. All experiments use a single NVIDIA GeForce 3090s GPU.
Group scores on Winoground/EqBen using BLIP (Table 12).

Method Winoground EqgBen

Text Score  Image Score  Group Score \ Text Score  Image Score  Group Score
ITCScore 28.0 9.0 6.5 20.9 20.3 10.6
ITMScore 35.8 15.8 13.3 26.0 20.32 12.6
Visual GPTScore® 36.5 21.5 16.8 20.4 26.1 11.68

Table 12: Performance comparison of BLIP’s ITCScore, ITMScore, and a-tuned VisualGPTScore®”
on Winoground (all) and EqBen (val).

Fine-grained tags on Winoground (Table 13).

Dataset Size Method Text Score  Image Score  Group Score
ITCScore 32.6 11.6 8.1
NoTag 171  ITMScore 41.9 21.5 19.2
VisualGPTScore®” 43.0 28.5 23.8
ITCScore 433 16.7 16.7
NonCompositional 30 ITMScore 50.0 233 16.7
VisualGPTScore®” 433 333 26.7
ITCScore 32.6 8.7 6.5
AmbiguouslyCorrect 46 ITMScore 28.3 6.5 22
VisualGPTScore®” 26.1 19.6 8.7
ITCScore 29.0 7.9 7.9
VisuallyDifficult 38 ITMScore 26.3 10.5 7.9
VisualGPTScore®” 31.6 13.2 7.9
ITCScore 325 8.9 8.9
Unusuallmage 56 ITMScore 21.4 10.7 7.1
Visual GPTScore®” 30.4 10.7 8.9
ITCScore 20.0 8.0 6.0
Unusual Text 50 ITMScore 38.0 12.0 12.0
VisualGPTScore®” 30.0 18.0 12.0
ITCScore 16.7 2.6 1.3
ComplexReasoning 78 ITMScore 21.8 5.1 2.6
VisualGPTScore®” 21.8 10.3 6.4

Table 13: BLIP performance on Winoground subtags [18]]. We report the number of test instances for
each subtag and their respective text score, image score, group score.
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