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Abstract

The ability to quickly learn a new task with minimal in-
struction - known as few-shot learning - is a central as-
pect of intelligent agents. Classical few-shot benchmarks
make use of few-shot samples from a single modality, but
such samples may not be sufficient to characterize an entire
concept class. In contrast, humans use cross-modal infor-
mation to learn new concepts efficiently. In this work, we
demonstrate that one can indeed build a better visual dog
classifier by reading about dogs and listening to them bark.
To do so, we exploit the fact that recent multimodal founda-
tion models such as CLIP are inherently cross-modal, map-
ping different modalities to the same representation space.
Specifically, we propose a simple cross-modal adaptation
approach that learns from few-shot examples spanning dif-
ferent modalities. By repurposing class names as additional
one-shot training samples, we achieve SOTA results with an
embarrassingly simple linear classifier for vision-language
adaptation. Furthermore, we show that our approach can
benefit existing methods such as prefix tuning, adapters, and
classifier ensembling. Finally, to explore other modalities
beyond vision and language, we construct the first (to our
knowledge) audiovisual few-shot benchmark and use cross-
modal training to improve the performance of both image
and audio classification. Project site at link.

1. Introduction
Learning with minimal instruction is a hallmark of hu-

man intelligence [86, 91, 98], and is often studied under the
guise of few-shot learning. In the context of few-shot visual
classification [18, 20, 29, 46, 79, 82], a classifier is first pre-
trained on a set of base classes to learn a good feature repre-
sentation and then adapted or finetuned on a small amount
of novel class data. However, such few-shot setups often
face an inherent ambiguity – if the training image contains a
golden retriever wearing a hat, how does the learner know if
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“A photo of a dog.”

Figure 1. Human perception is internally cross-modal. When
we perceive from one modality (such as vision), the same neu-
rons will be triggered in our cerebral cortex as if we are perceiv-
ing the object from other modalities (such as language and au-
dio) [24, 67, 70]. This phenomenon grants us a strong ability to
learn from a few examples with cross-modal information [52, 67].
In this work, we propose to leverage cross-modality to adapt mul-
timodal models (such as CLIP [81] and AudioCLIP [27]), that en-
code different modalities to the same representation space.

the task is to find dogs, golden retrievers, or even
hats? On the other hand, humans have little trouble under-
standing and even generalizing from as few as one example.
How so?

We argue that humans make use of multimodal sig-
nals and representations (Figure 1) when learning concepts.
For example, verbal language has been shown to help tod-
dlers better recognize visual objects given just a few ex-
amples [42, 90]. Indeed, there exists ample evidence from
neuroscience suggesting that cognitive representations are
inherently multimodal. For instance, visual images of a per-
son evoke the same neurons as the textual strings of the per-
son’s name [80] and so do the audio clips of that person talk-
ing [70]. Even for infants as young as 1-5 months old, there
is a strong correspondence between auditory-visual [52] as
well as visual-tactile signals [67]. Such cross-modal or
inter-modal representations are fundamental to the human
perceptual-cognitive system, allowing us to understand new
concepts even with few examples [24].
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Cross-modal adaptation (our approach). In this paper,
we demonstrate that cross-modal understanding of different
modalities (such as image-text or image-audio) can improve
the performance of individual modalities. That is, reading
about dogs and listening to them bark can help build a better
visual classifier for them! To do so, we present a remark-
ably simple strategy for cross-modal few-shot adaptation:
we treat examples from different modalities as additional
few-shot examples. For example, given the “1-shot” task
of learning a dog classifier, we treat both the textual dog
label and the single visual image as training examples for
learning a (visual) dog classifier. Learning is straightfor-
ward when using frozen textual and visual encoders, such
as CLIP [81], that map different modalities to the same rep-
resentational space. In essence, we have converted the “n-
shot” problem to a “(n+1)-shot” problem (Figure 2)! We
demonstrate that this basic strategy produces SOTA results
across the board with a simple linear classifier, and can be
applied to existing finetuning methods [100,111,113] or ad-
ditional modalities (e.g., audio).

Why does it work? From one perspective, it may not
be surprising that cross-modal adaptation produces state-
of-the-art accuracy, since it takes advantage of additional
training examples that are “hidden” in the problem defini-
tion, e.g., a label name [104] or an annotation policy [68]
for each class. However, our experiments demonstrate that
multimodal cues are often complementary since they cap-
ture different aspects of the underlying concept; a dog la-
bel paired with a single visual example is often more per-
formant than two images! For example, Figure 3 demon-
strates a one-shot example where the target concept is am-
biguous, but becomes clear once we add information from
other modalities like language and sound.

Multimodal adaptation (prior art). In contrast to our
cross-modal approach, most prior works simply follow the
popular practice of finetuning unimodal foundation mod-
els, such as large vision [12, 31, 32] or language mod-
els [8, 17, 62]. For example, CoOp [113] and other prompt-
ing methods [63,112,114] finetune CLIP via prefix tuning to
replace hand-engineered prompts such as "a photo of
a {cls}" with learned word tokens. Similarly, inspired
by parameter-efficient tuning of language models [39],
adapter-based methods [21,111] finetune CLIP by inserting
lightweight multi-layer-perceptrons (MLPs). However, we
aim to study the fundamental question of how to finetune
multi-modal (as opposed to uni-modal) models. A crucial
difference between prior art and ours is the use of textual in-
formation, as all existing methods [41,100,111,113] repur-
pose additional text features as classifier weights instead of
training samples. We demonstrate in this paper that cross-
modal adaptation is not only more performant but can also
benefit prior unimodal approaches.

Problem setup. We begin by replicating the existing

+ Text

Dog Cat Image TextXX Test

“A photo of a cat.”

“A photo of a dog.”

Figure 2. Adding additional modalities helps few-shot learn-
ing. Adding textual labels to a 2-shot cat-vs-dog classification
task leads to better test performance (by turning the problem into
a 3-shot cross-modal task!). We visualize cross-modal CLIP [21]
features (projection to 2D with principal component analysis) and
the resulting classifier learned from them, and observe a large shift
in the decision boundary. See Figure 5 for more examples.

evaluation protocol of other works [81, 111, 113] on few-
shot adaptation of vision-language models, and report per-
formance on 11 diverse downstream datasets. We produce
state-of-the-art accuracy with an embarrassingly simple lin-
ear classifier that has access to additional “hidden” train-
ing examples in the form of textual labels, resulting in a
system that is far more lightweight than prior art. Interest-
ingly, we show that existing approaches [100,111,113], de-
spite already repurposing text features as classifier weights,
can still benefit from cross-modal learning. Finally, we ex-
tend our work to the audio domain by taking advantage of
AudioCLIP [27] that maps audio to the same frozen CLIP
representation space. We construct the first (to our knowl-
edge) cross-modal few-shot learning benchmark with audio
by intersecting ImageNet [15] and the ESC-50 audio clas-
sification dataset [77]. We show that cross-modal audiovi-
sual learning helps for both downstream image and audio
classification; in summary, one can train better dog image
classifiers by listening to them bark!

2. Related Works
Webly-supervised Pre-training. Learning founda-

tion models [5] from large-scale web data is becoming
a predominant paradigm in AI. In NLP, models such as
BERT [17] and GPT-3 [8] are pre-trained on a massive
web text corpus with language-modeling objectives and
can be transferred to a wide range of downstream tasks,
even without explicit supervised finetuning [61, 94]. Self-
supervision [11, 12, 32] is also a trending topic in the vi-
sion community, and recent methods [26, 31] demonstrate
even stronger visual representations than fully-supervised
pre-trained ones such as on ImageNet [15].

Multimodal Foundation Models. Recently, founda-
tion models have shifted towards a multimodal supervi-
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Figure 3. Cross-modality reduces the ambiguity of uni-modal
few-shot learning problems. A uni-modal few-shot training set
could be underspecified; for example, even for a simple binary
image classification task, if we only look at one photo, it is unclear
whether the class target is the animal, the hat, or the background
scene. We show that adding an extra modality, such as text or
audio, often reduces the ambiguity of the problem setup. Notably,
language usually comes for free in standard classification datasets
in the form of a textual label per class.

sion paradigm. For visual representation learning, early
works transform web image captions into structured out-
puts for supervised learning, such as multi-label targets [47]
or visual n-grams [56]. More recently, CLIP [81] and
ALIGN [43] propose a simple contrastive-based approach
to embed images and captions into the same representa-
tion space, and demonstrate impressive “zero-shot” perfor-
mance on downstream tasks. Follow-up works enhance
multimodal pre-training by incorporating generative-based
objectives [2, 57, 106], consistency regularization [60, 69],
stronger visual priors [107], phrase-grounding tasks [58,
109], and audiovisual information through videos [27]. In
this work, we focus on adapting CLIP [81] and Audio-
CLIP [27] for few-shot classification because contrastive-
based multimodal models are stronger classifiers [2].
Adopting other multimodal models [2, 106] or adapting to
tasks other than classification [92, 109] can be interesting
future directions.

Adaptation of Foundation Models. As multimodal
pre-trained models have excelled at classic vision tasks [81,
109], there has been surging interest in developing more
efficient adaptation methods. However, we observe that
most of the trending techniques are built upon successful
recipes crafted for unimodal foundation models. For exam-
ple, CLIP [81] adopts linear probing [12, 31, 32, 109] and
full-finetuning [25, 31, 48, 99, 101, 109] when transferring
to downstream tasks. Prompt adaptation of CLIP [63, 81,
105, 112, 114] is motivated by the success of prefix-tuning
for language models [16,22,30,45,61,78,84,85,89]. Simi-
larly, CLIP-Adapter [21] and Tip-Adapter [111] are inspired
by parameter-efficient finetuning methods [39, 44, 110] that
optimize lightweight MLPs while freezing the encoder. Yet,

all aforementioned methods including WiSE-FT [100] use
the other modality, e.g., textual labels, as classifier weights
and still calculate a uni-modal softmax loss on the few-shot
images. We instead show that incorporating other modali-
ties as training samples is far more effective.

Few-Shot Classification. Prior successful few-shot
learning methods leverage meta learning [20, 82], metric
learning [4, 91, 95], transfer learning [29, 79], and trans-
ductive learning [18, 46]. These classic algorithms usually
assume a large meta-training set for pre-training the net-
work, and then evaluate on multiple episodes of few-shot
train (support) and test (query) sets. In this work, we instead
follow the new evaluation protocol implemented by recent
works on few-shot adaptation with CLIP [81, 111, 113]: (1)
the meta-training phase is replaced with pre-trained CLIP
models, and (2) the test sets are the official test splits of
each dataset (thus not few-shot). Notably, none of the
prior works [111, 113] we compare to in this paper per-
form optimization with test set samples, and we follow
this practice to ensure a fair comparison. We leave semi-
supervised [97] or transductive finetuning [18, 40] tech-
niques as future work.

Cross-Modal Machine Learning. Inspired by cross-
modal human cognition [9, 49, 70], cross-modal learn-
ing [68, 104] is a subfield of multimodal machine learn-
ing [1, 3, 10, 38, 54, 59, 64, 73, 74, 88, 108] that aims to use
data from additional modalities to improve a unimodal task.
Cross-modal learning does not require instance-wise align-
ment; for example, existing algorithms [68,104] can benefit
from class-level descriptions as opposed to image-level cap-
tions. In this work, we propose a more lightweight cross-
modal learning method by treating data from other modali-
ties as additional training samples. Furthermore, we encour-
age future works to embrace cross-modal few-shot learning
as opposed to the underspecified uni-modal problem setup
(Figure 3).

3. Cross-Modal Adaptation

In this section, we mathematically formalize our ap-
proach to cross-modal few-shot learning.

Uni-modal learning: We begin by reviewing standard
uni-modal few-shot classification, which learns a classifier
from a small dataset of (xi, yi) pairs and pre-trained feature
encoder ϕ(·):

Luni−modal =
∑
i

H(yi, ϕ(xi)) (1)

where H is typically the softmax loss

H(y, f) = − log
(
p(y|f)

)
= − log

( ewy·f∑
y′ ewy′ ·f

)
. (2)
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Figure 4. Uni-modal (left) vs. cross-modal adaptation (right).
Prior works [21, 100, 111, 113] perform uni-modal adaptation by
calculating the loss over a single modality. Cross-modal adap-
tation can however easily outperform them by including training
samples from other modalities, with pre-trained encoders mapping
different modalities to the same representation space. We also
show that our approach can be applied to improve prior art and
even extend to the audio modality with AudioCLIP [27].

Our notation separates out the feature extractor ϕ from the
final class weights wy , since the former is typically pre-
trained on a massive source dataset and the latter is trained
on the few-shot target dataset. However, sometimes the rep-
resentation ϕ can also be finetuned on the few-shot dataset
as well (as we explore in our experiments). Importantly,
both the class weights and feature extractor must live in the
same N -dimensional space in order to compute their inner
product:

wy, ϕ(·) ∈ RN . (3)

Though we focus on classification, class models could be
learned via other losses (such as centroid prototypes [91]).

Cross-modal learning: Our extension to multiple
modalities is staightforward; we assume each training ex-
ample is accompanied by a discrete label m denoting its
modality:

(xi, yi) → (xi, yi,mi), xi ∈ Xmi
, mi ∈ M. (4)

For example, one may define the set of modalities to be
M = {visual, language} or {visual, audio} (Figure 4). We
can then define an associated loss:

Lcross−modal =
∑
i

H(yi, ϕmi(xi)), (5)

where we crucially assume access to modality-specific fea-
ture encoders ϕm for m ∈ M . While the individual data-
points xi may come from different modalities with different
dimensions, our formulation requires that the encoders map
all modalities to the same fixed-dimensional space.

wy, ϕm(·) ∈ RN . (6)

Note that this requirement is satisfied by many multimodal
foundation models (such as CLIP [81] and ALIGN [43])

since they make use of cross-modal contrastive losses that
map different modalities into the same N -dimensional em-
beddings.

Inference: The learned classifier can produce a label
prediction for a test example x from any modality m ∈ M :

ŷ = argmax
y′

wy′ · ϕm(x). (7)

This means we can use the same classifier to classify differ-
ent test modalities m (e.g., visual images and audio clips).

Cross-modal ensembles. We now show that cross-
modal learning produces classifiers that are ensembles of
modality-specific classifiers, exposing a connection to re-
lated approaches for ensembling (such as WiSE-FT [100]).
We begin by appealing to the well-known Representer The-
orem [87], which shows that optimally-trained classifiers
can be represented as linear combinations of their training
samples. In the case of a cross-modal linear probe, weights
for class y must be a weighted combination of all i training
features, across all modalities:

wy =
∑
i

αiyϕmi(xi) =
∑
m∈M

wm
y , where

wm
y =

∑
{i:mi=m}

αiyϕm(xi). (8)

Linear classification via cross-modal adaptation solves for
all weights αiy jointly, so as to minimize the empirical risk
(or training loss). In contrast, prior art optimizes for image-
specific αiy’s independently of the text-specific αiy’s, lin-
early combining them with a single global α (as in WiSE-
FT [100]) or via text-based classifier initialization [21,111].
Our analysis suggests that the joint optimization enabled by
cross-modal learning may help other adaptation methods,
as our experiments will show.

Extensions: Although we focus on unimodal inference
tasks, the above formulation allows the learned classifier to
be trivially applied to multimodal test sets - e.g., classify-
ing videos by training on image and audio modalities by
ensembling predictions across the two with (7). We leave
these scenarios as future work. Finally, just as one can opti-
mize uni-modal losses (1) by finetuning the encoder ϕ, one
can similarly finetune modality-specific encoders ϕm in the
cross-modal setting (5). We explore such partial finetuning
in the next section.

4. Vision-Language Adaptation
We now explore our cross-modal formulation for a par-

ticular multimodal setting. Many prior works [68, 104, 111,
113] explore the intersection of vision and language, and
thus that is our initial focus. Interestingly, the influen-
tial “zero-shot” and “few-shot” evaluation protocols intro-
duced by prior work [81, 102] can be mapped to our cross-
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Method
Number of shots

Train speed
1 2 4 8 16

Zero-Shot CLIP (58.8) - - - - - -
Linear Probing 36.7 47.6 57.2 65.0 71.1 <1min
WiSE-FT [100] 59.1 61.8 65.3 68.4 71.6 <1min

CoOp [113] 59.6 62.3 66.8 69.9 73.4 14hr
ProGrad [114] 62.6 64.9 68.5 71.4 74.0 17hr

Tip-Adapter [111] 64.5 66.7 69.7 72.5 75.8 5min
Tip-Adapter† [111] 63.3 65.9 69.0 72.2 75.1 5min

Cross-Modal Linear Probing 64.1 67.0 70.3 73.0 76.0 <1min
Cross-Modal Partial Finetuning 64.7 67.2 70.5 73.6 77.1 <3min

Table 1. Comparison to SOTA using the CoOp [113] protocol,
which reports top-1 accuracy across 11 test sets in Table 6. We
include per-dataset results and standard deviation in section 10.
For a fair comparison, we reuse the same few-shot visual samples
and hand-engineered text prompts used by Tip-Adapter [111]. The
original Tip-Adapter searches over hyperparameters (e.g., early
stopping) on the large-scale test set, which may not be realistic for
few-shot scenarios. Instead, we rerun their codebase and early-
stop on a few-shot validation set (as we do), denoted by †. We
reproduce WiSE-FT in our codebase since the original work does
not provide few-shot results. In summary, by incorporating one-
shot text samples into our training set, a simple cross-modal linear
probe already outperforms all prior methods across all shots. Ad-
ditionally, partial finetuning further improves performance, espe-
cially for 8 and 16 shots. Finally, our methods are faster to train
than prior work, sometimes significantly (full report in Table 9).

modal setting, with one crucial difference; the textual la-
bel of each class can be treated as an explicit training sam-
ple (xi, yi,mi). From this perspective, “zero-shot” learn-
ing may be more naturally thought of as “one-shot” cross-
modal learning that learns a few-shot model on text and then
infers with it on images.

Few-shot evaluation protocol. To ensure a fair com-
parison, we strictly follow the protocol of CoOp [113] by
reporting test performance on 11 public image datasets (Ta-
ble 6), with ResNet50 [33] as the image encoder back-
bone. For maximal reproducibility, we use CoOp’s dataset
splits [113] and the three-fold few-shot train sets sampled
with the same random seeds. We adopt the given test split
of each dataset as the test set. Some prior works [63, 111]
secretly use the large-scale test set to tune hyperparameters
for few-shot learning; we instead exercise due diligence by
tuning hyperparameters (such as the learning rate, weight
decay, and early stopping) on the given few-shot valida-
tion set with min(n, 4) shots, where n is the number of
training shots. In the appendix, we show the pytorch-style
pseudocode (algorithm 1) and hyperparameter details (sec-
tion 9).

Cross-modal adaptation outperforms SOTA. Table 1
shows the effectiveness of our proposal: we surpass all prior
art with an embarrassingly simple linear classifier that re-
quires significantly less training time than other carefully-
crafted algorithms. In addition, partial finetuning of the last

Uni-modal Cross-modal

Figure 5. Additional PCA projection plots for random pairs
of classes in ImageNet [15]. Adding one-shot text as training
samples can oftentimes aggressively shift the decision boundary.

attentional pooling layer from ϕimage sets the new SOTA.
To ensure a fair comparison, we augment the class names
into sentences using hand-engineered templates selected by
Tip-Adapter [111] (Table 6) and follow their practice to ini-
tialize the linear layer with text features. Furthermore, we
perform minimal image augmentation with a center crop
plus a flipped view instead of random crops as in prior
art [111, 113]. As such, we can pre-extract features before
training the classifier, leading to significantly less training
time as shown in Table 9. We also show that our method
can benefit from both image and text augmentation in Ta-
ble 7. In the appendix, we provide more ablations on clas-
sifier initialization (Table 12), partial finetuning (Table 13),
and ViT-based backbone (Table 14). Per-dataset results are
also in appendix Table 10.

Why does cross-modal learning help? As stated ear-
lier, one argument for the effectiveness of cross-modal
learning is that it turns the original n-shot problem to an
(n + 1)-shot one. However, Table 1 shows that 1-shot
cross-modal linear probing outperforms the 2-shot results
of most prior methods. This suggests that training sam-
ples from other modalities tend to contain complementary
cues [68, 100, 104]. One can loosely observe this in Fig-
ure 2 and Figure 5, whereby visual and text examples lie in
slightly different parts of the embedding space (indicating
the potential to aggressively shape the final decision bound-
ary). In fact, WiSE-FT [100] is inspired by similar reasons
to ensemble the uni-modal visual classifier with a “zero-
shot” (one-shot-text) classifier (in the linear probing case).
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Method Number of shots

1 2 4 8 16

Linear Probing 36.7 47.6 57.2 65.0 71.1
Cross-Modal Linear Probing 64.1 67.0 70.3 73.0 76.0

∆ 27.4 19.4 13.1 8.0 4.9
WiSE-FT [100] 59.1 61.8 65.3 68.4 71.6

Cross-Modal WiSE-FT 63.8 66.4 69.0 71.7 74.1
∆ 4.7 4.6 3.7 3.3 2.5

CoOp [113] 59.6 62.3 66.8 69.9 73.4
Cross-Modal Prompting 62.0 64.9 68.6 71.4 74.0

∆ 2.4 2.6 1.8 1.5 0.6
Tip-Adapter† [111] 63.3 65.9 69.0 72.2 75.1

Cross-Modal Adapter 64.4 67.6 70.8 73.4 75.9
∆ 1.1 1.7 1.8 1.2 0.8

Table 2. Cross-modal adaptation improves existing methods.
We follow the same protocol as Table 1, reporting the delta accu-
racy between uni-modal and cross-modal variants of various state-
of-the-art methods. The consistent boost suggests that cross-modal
training is orthogonal to techniques for unimodal adaptation, such
as prompting [113], adapter [39], and robust finetuning [100].

However, Equation 8 shows that cross-modal adaptation can
also be seen as jointly learning an ensemble, while WiSE-
FT [100] learns the visual classifier independently of the
text classifier. This suggests that other adaptation methods
may benefit from cross-modal learning, as we show next.

Cross-modal adaptation helps prior art (Table 2),
including prompting (CoOp [113]), adapters (Tip-
Adapter [111]), and robust-finetuning (WiSE-FT [100]).
We see a large improvement in the low-data regime (1 and
2 shots). Notably, we do not need to tune any methods, and
simply reuse the reported hyperparameters. For prompt-
ing, we follow CoOp [113] to optimize 16 continuous
tokens with the same training setting. For the Adapter
model, we follow the same 2-layer MLP architecture
of CLIP-Adapter [21] with the given residual ratio of
0.2; we outperform Tip-Adapter without relying on their
training-free initialization of MLP. For WiSE-FT, we adopt
the given ratio (0.5) to post-hoc ensemble the learned and
the zero-shot classifiers. Overall, our experiments suggest
that cross-modal adaptation is consistently effective, and
should likely be a baseline moving forward given its ease-
of-implementation (algorithm 1). For example, instead of
separately benchmarking on “zero-shot” (one-shot-text)
and few-shot-vision, a cross-modal linear prob would
suffice to evaluate multimodal representations of a model.

5. Vision-Audio Adaptation

We now explore cross-modal adaption for other modal-
ities such as audio. We pose the following question: can
one learn a better dog visual classifier by listening to a dog
barking? To examine this question, we curate the first au-
diovisual benchmark that supports few-shot classification of
both image and audio.

Included Dataset ESC-50 [77] Class ImageNet [15] Class

ImageNet-ESC-19

rooster rooster
hen hen

chirping-birds chickadee
frog tree frog
dog otterhound
cat egyptian cat

insects fly
crickets cricket

pig pig
sheep big-horn sheep

airplane airliner
train high-speed train

chainsaw chainsaw
keyboard-typing computer keyboard

clock-alarm digital clock
mouse-click computer mouse

vacuum-cleaner vacuum cleaner
clock-tick wall clock

washing-machine washing machine

ImageNet-ESC-27

can-opening can opener
church-bells church bells

crackling-fire fire screen
toilet-flush toilet seat
water-drops sink

drinking-sipping water bottle
pouring-water water jug

sea-waves sandbar

Table 3. ImageNet-ESC dataset class matchings.

Our ImageNet-ESC benchmark.1 We construct our
audiovisual benchmark by finding the intersection of two of
the most popular image and audio datasets: ImageNet [15]
with 1000 types of objects and ESC-50 [77] with 50 types
of environmental sounds (including animal, nature, hu-
man activity, domestic, and urban noises). We use the
class names of the two datasets for class matching. For
each class in ESC-50, we check whether there is a cor-
responding ImageNet class that may produce this type of
sound. In this process, we observe that the audio-to-object
matching can sometimes be one-to-many. For example,
the clock-alarm class in ESC-50 can be mapped to ei-
ther digital clock or analog clock in ImageNet;
the dog (barking) class in ESC-50 can be matched to any
of the 120 dog species. In such scenarios, we randomly
match the classes, e.g., clock alarm to digital
clock and dog to otterhound. Also, we find that
some audio classes loosely match with some visual objects,
such as drinking-sipping to water bottle and
pouring-water to water jug. As such, we create
two versions of the dataset: (1) ImageNet-ECS-27, which
represents the maximal intersection consisting of all loose
matches, and (2) ImageNet-ESC-19, a subset of the for-
mer version consisting of more accurate matches. The final
matches are shown in Table 3.

Few-shot evaluation protocol. We use five-fold few-
shot splits sampled from ImageNet, with each split divided
into half for training and validation. Test performance is
recorded on the official ImageNet validation set of the cor-

1Download instructions can be found in our codebase.
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responding classes. We adopt the predefined five folds of
ESC-50, where each fold contains 8 samples per class. We
construct 5 splits from ESC-50 by selecting one fold for
training and validation, and record test performance on the
other 4 folds. We report averaged performance over 25 runs
(since we have 5 random splits for each modality). To keep
consistent with our vision-language experiments, we adopt
a uni-modal validation and test set and leave cross-modal
testing for future work.

Audio encoding. We use AudioCLIP [27] with an ES-
ResNeXT backbone [28] as the audio encoder ϕaudio. Be-
cause AudioCLIP is trained on a large-scale video dataset
(AudioSet [23]) while freezing the pre-trained CLIP text
and image encoder, it produces audio embeddings in the
same representation space. While AudioCLIP is pretrained
on a sizable amount of data, we note that it does not come
close to matching the scale of CLIP pretraining [27, 81].
Thus, it does not perform favorably compared to the SOTA
for downstream “zero-shot” audio (i.e., one-shot text) clas-
sification tasks [27]. However, scaling up audio pretraining
is orthogonal to our investigation.

Audio improves image classification. Table 4 shows
that adding a random one-shot-audio improves upon naive
image-only linear probing, especially in an extremely low-
shot setting. This reaffirms Figure 3’s hypothesis that cross-
modality can reduce the ambiguity of the uni-modal few-
shot setup; in other words, one can learn a better image clas-
sifier by listening to object sounds. One exception is the 4-
shot performance on ImageNet-ESC-27, where adding au-
dio does not help. We posit that (1) loosely-matched classes
can result in noisier training data, and (2) the audio repre-
sentations are not as robust due to smaller-scale pretraining.
This suggests that cross-modal adaptation is less effective
when representations are not aligned well or insufficiently
trained. Nevertheless, under most scenarios, cross-modal
adaptation helps. Table 15 shows that adding the language
modality (i.e., label names) can significantly boost the per-
formance, which is expected because our benchmark is cu-
rated with textual information. For all experiments, we fol-
low an identical procedure to vision-language experiments
in section 3 and provide details in appendix section 9.

Vision improves audio classification. We additionally
evaluate the reverse task - whether adding a random one-
shot image sample for downstream audio classification can
improve upon audio-only training. Table 5 shows the re-
sults, where we see the same favorable trend. This success
concludes that our approachis modality-agnostic.

6. Ablation Studies
We present a few selected ablation studies in this section.

For comprehensive results, please refer to section 10.
Data augmentation of text samples. Like most prior

works [81, 113], we also find that data augmentation can

Dataset Method
Image Classification

1-shot 2-shot 4-shot

ImageNet-ESC-19
Image-Only Linear 68.0 75.7 83.1
Image-Audio Linear 69.3 76.7 83.2

ImageNet-ESC-27
Image-Only Linear 60.1 71.8 79.0
Image-Audio Linear 60.9 73.3 78.9

Table 4. Image classification results on ImageNet-ESC bench-
mark. Adding one audio shot can improve image classification
under most few-shot scenarios, even when the audio and vision
modalities are only loosely aligned.

Dataset Method
Audio Classification

1-shot 2-shot 4-shot

ImageNet-ESC-19
Audio-Only Linear 31.2 41.1 48.5
Audio-Image Linear 35.7 45.9 51.6

ImageNet-ESC-27
Audio-Only Linear 28.2 39.0 47.1

Audio-Image Linear 35.0 43.5 48.5

Table 5. Audio classification results on ImageNet-ESC bench-
mark. Similar to Table 4, adding one image shot improves few-
shot audio classification.

Dataset Classes Train Val Test Hand-crafted Prompt [111]

Caltech101 [19] 100 4,128 1,649 2,465 a photo of a {cls}.
OxfordPets [75] 37 2,944 736 3,669 a photo of a {cls}, a type of pet.

StanfordCars [50] 196 6,509 1,635 8,041 a photo of a {cls}.
Flowers102 [71] 102 4,093 1,633 2,463 a photo of a {cls}, a type of flower.

Food101 [6] 101 50,500 20,200 30,300 a photo of {cls}, a type of food.

FGVCAircraft [66] 100 3,334 3,333 3,333 a photo of a {cls}, a type of aircraft.

SUN397 [103] 397 15,880 3,970 19,850 a photo of a {cls}.
DTD [14] 47 2,820 1,128 1,692 {cls} texture.

EuroSAT [35] 10 13,500 5,400 8,100 a centered satellite photo of {cls}.
UCF101 [93] 101 7,639 1,898 3,783 a photo of a person doing {cls}.

ImageNet [15] 1000 1.28M N/A 50,000

itap of a {cls}.
a bad photo of the {cls}.

a origami {cls}.
a photo of the large {cls}.
a {cls} in a video game.

art of the {cls}.
a photo of the small {cls}.

Table 6. Detailed statistics of the 11 datasets. We adopt the
hand-engineered templates selected by Tip-Adapter [111] unless
otherwise stated. Note that this set of templates is identical to the
ones selected by CLIP [81] and CoOp [113], except for ImageNet.

improve downstream performance during vision-language
adaptation (cf. Table 1). Notably, since the class names are
included as training samples, one can explore augmentation
techniques for text (just as random cropping for images).
Besides the fixed template a photo of a {cls} and
hand-crafted templates (Table 6), we also try a template
mining strategy that does not rely on the selected dataset-
specific templates. To automatically mine for the templates,
we search among a pool of 180 templates for 21 templates
with the best zero-shot performance on the few-shot vali-
dation set of each dataset. We discuss how we collect the
180 templates in appendix section 9. For image augmen-
tation, we perform standard flipping and random cropping.
We show a subset of results in Table 7, and find that all
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Finetuning ImageAugment TextAugment
Number of shots

1 2 4 8 16

Linear
CenterCrop

Classname 61.8 65.3 69.0 72.0 74.9
a photo of a {cls}. 63.2 66.2 69.7 72.5 75.3

Template Mining 63.5 67.2 70.3 73.1 75.7
Hand Engineered [111] 63.7 66.7 70.3 72.9 75.5

+Flipped View Hand Engineered [111] 64.1 67.0 70.3 73.0 76.0

Partial
CenterCrop

Classname 62.5 65.7 69.3 72.9 76.2
a photo of a {cls}. 63.8 66.8 69.8 73.4 76.7

Template Mining 64.3 67.1 70.3 73.5 76.5
Hand Engineered [111] 64.6 67.2 70.2 73.7 76.9

+Flipped View Hand Engineered [111] 64.7 67.7 70.6 73.8 77.2

Table 7. Augmentation for cross-modal adaptation. We evalu-
ate the impact of selected augmentation techniques following the
same CoOp protocol as in Table 1.

text augmentation techniques provide a sizable boost in per-
formance. We also report comprehensive ablations in ap-
pendix Table 11 and compare it to the SOTA prompting
method ProDA [63]. The salient conclusions include (1)
the performance gain from image augmentation is saturated
after more than two views, and (2) template mining can
be as competitive as a large number of 36 carefully-tuned
prompts. In fact, prompting [61, 63, 113] can be viewed
as another text augmentation technique under cross-modal
adaptation, and we leave this exploration to future work.

Test-time distribution shifts. We examine how robust
our approach is against test-time distribution shifts in Ta-
ble 8. Specifically, we follow the CoOp [113] protocol to
report the test performance of a classifier trained on the
source dataset (16-shot ImageNet) to 4 distribution-shifted
target test sets, including ImageNet-V2 [83], ImageNet-
Sketch [96], ImageNet-A [37], and ImageNet-R [36]. As
shown in Table 8, cross-modal adaptation can significantly
boost the robustness of image-only linear probing and is
competitive against baselines designed to address robust-
ness such as CoCoOp [112] and WiSE-FT [100]. Cross-
Modal adaptation also improves upon WiSE-FT [100] and
sets the new SOTA. We can conclude that language modal-
ity plays an important role in robustness, similar to how hu-
mans rely on textual cues for recognition [37].

Efficiency. As shown in Table 9, our approaches are
much more lightweight because we do not rely on deep
finetuning [112, 113] or heavy image augmentations. This
allows us to speed up training by pre-extracting features,
resulting in rather fast training speeds.

7. Discussion and Limitations
We show that cross-modal training is a lightweight

and effective approach for adapting pre-trained multimodal
models for downstream uni-modal tasks. One reason for its
effectiveness is that it naturally addresses the underspecifi-
cation problem common to few-shot learning. In the con-
text of vision-language adaptation, one can achieve SOTA
results by using existing text labels as free training sam-

Method
Source Target

ImageNet -V2 -Sketch -A -R

ResNet50
Zero-Shot CLIP 58.2 51.3 33.3 21.7 56.0
Linear Probing 55.9 46.0 19.1 12.7 34.9
CoOp (M=4) 63.0 55.1 32.7 22.1 55.0
CoOp (M=16) 63.3 55.4 34.7 23.1 56.6

WiSE-FT (α=0.5) 62.9 54.2 33.3 20.3 57.4
Cross-Modal WiSE-FT (α=0.5) 65.2 56.6 35.6 22.6 59.5

Cross-Modal Linear Probing 64.5 55.3 33.1 20.0 56.4
ViT-B/16

Zero-Shot CLIP 66.7 60.8 46.2 47.8 74.0
Linear Probing 65.9 56.3 34.8 35.7 58.4
CoOp (M=4) 71.9 64.2 46.7 48.4 74.3
CoOp (M=16) 71.7 64.6 47.9 49.9 75.1

CoCoOp 71.0 64.1 48.8 50.6 76.2
WiSE-FT (α=0.5) 73.0 65.2 49.1 49.8 77.6

Cross-Modal WiSE-FT (α=0.5) 72.9 65.4 49.2 50.5 77.8
Cross-Modal Linear Probing 73.2 64.8 47.9 48.3 76.4

Table 8. Robustness under test-time distribution shifts
(imagenet-16-shot). We follow CoOp [113]’s protocol for eval-
uating the test-time performance on variants of ImageNet. We re-
port results with two image encoders (ResNet50 and ViT-B/16),
and mark the best and second best results. Salient conclusions:
(a) Cross-modal linear probing is much more robust than its uni-
modal counterpart while being competitive to previous SOTA
methods such as WiseFT and CoOp, and (b) it can be further
augmented with post-hoc modification through WiseFT to achieve
new the SOTA.

Method Iteration Time Accuracy Gain

Zero-shot CLIP [81] 0 0 60.33 0
Image-Only Linear 12k 15sec 56.44 -3.89

CoOp [113] 100k 14h 40min 62.95 +2.62
ProGrad [113] 100k 17hr 63.45 +3.12

Tip-Adapter [111] 10k 5min 65.18 +5.18
Cross-Modal Linear 12k 15sec 64.51 +4.14
Cross-Modal Partial 12k 2.5min 65.95 +5.57

Table 9. Efficiency and accuracy for different methods on
ImageNet-16-shot. All experiments are tested with batch size 32
on a single NVIDIA GeForce RTX 3090 GPU. Our approaches
take less time and achieve SOTA performance.

ples. In the context of vision-audio adapation, one can learn
better visual object classifiers by listening to object sounds
(and better audio classifiers by looking at objects!). One
attractive aspect of cross-modal learning is that the learned
models naturally apply to multimodal test data, such as the
classification of videos that contain both visual and audio
signals. One limitation is that cross-modal learning is less
effective when model representations are not well aligned
or insufficiently trained (as shown in our audiovisual exper-
iments). However, due to its simplicity and effectiveness,
we hope cross-modal learning becomes a tool for future re-
search on multi-modal adaptation.
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Appendix

8. Pseudocode for Cross-modal Adaptation

Algorithm 1: An example of PyTorch-style pseu-
docode for cross-modal (vision-language) adapta-
tion. We omit linear classifier initialization and
early stopping with validation performance. One
can disable the corresponding grad field of the en-
coders for partial finetuning, or pre-extract interme-
diate features to speed up training.
# encoder i: image encoder
# encoder t: text encoder
# w: linear layer
# T: temperature scaling
# loss fn: cross entropy loss

for in iteration:
# Sample image and text minibatch
im, im labels = image loader.next()
tx, tx labels = text loader.next()

# Extract features
im f = encoder i(im)
tx f = encoder t(tx)

# Concatenate then L2 normalize
features = cat((im f, tx f))
features = normalize(features)
labels = cat((im labels, tx labels))

# Compute per-class logits and loss
logits = w(features)
loss = loss fn(logits / T, labels)
loss.backward()

# update linear layer
update(w.params)
# (optional) update encoders
update(encoder i.params)
update(encoder t.params)

9. Experimental Details
In this section, we go through the hyperparameter details

for all the experiments for reproducibility.
Basic settings: We follow the original CLIP [81] to

L2-normalize the features after the encoder before sending
them into the linear layer. We also use the L2-normalized
text features to initialize the final linear layer weight follow-
ing WiSE-FT [100]. For all cross-modal adaptation experi-
ments, half of the batch is image samples and the other half

is text samples. For all experiments, we use AdamW opti-
mizer following WiSE-FT [100] and tune the hyperparame-
ters including initial learning rate, weight decay, and batch
size on the few-shot validation set. We perform a learn-
ing rate warmup with 50 iterations, during which the learn-
ing rate goes up linearly from 0.00001 to the initial value.
We then perform a cosine annealing learning rate schedul-
ing over the course of 12800 iterations. We do early stop-
ping based on the few-shot validation set performance eval-
uated every 100 iterations. Furthermore, because the logit
scale (inverse of softmax temperature) is a learnable weight
clipped at 100 during CLIP-pretraining [81], we reuse the
given logit scale of 100 for all experiments except for par-
tial finetuning, where we find lowering it to 50 can improve
validation performance. Future work may choose to set the
logit scale as a learnable parameter instead.

We now report the range of our hyperparameter search
for each method. Note that the search range is kept the same
for all 11 target datasets.

Linear Probing: For all linear probing experiments, we
perform a grid search of learning rate in [1 × 10−3 ,1 ×
10−4 ], weight decay in [0.0, 0.01, 0.0001], and batch size
in [8, 32].

WiSE-FT: To compare with linear probing, we adopt the
same procedure above to train the linear classifier and then
perform post-hoc ensembling with the text-based classifier
with a fixed ratio of 0.5.

Partial Finetuning: For all partial finetuning experi-
ments, we perform a grid search of learning rate in [1 ×
10−5 ,1 × 10−6 ,1 × 10−7 ], weight decay in [0.0, 1 ×
10−3 ,1 × 10−5 ], and batch size is set to 8. CLIP [81]
adopts a modified version of ResNet-50 image encoder, in
which the final average pooling layer is replaced by an at-
tentional pooling layer. We thus choose this layer as the
finetuning target for all ResNet-50 experiments. For ViT-
B/16 encoder, we simply finetune the last transformer layer.
In the next section, we also show that finetuning the text
encoder is not as effective.

Cross-modal Prompting: We follow the same setup and
hyperparameters used in CoOp [113]. We use the ResNet-
50 backbone with 16 learnable tokens, and append the class
name to the end of the tokens. Following CoOp, we use
SGD with a learning rate of 0.002, decayed using the co-
sine annealing rule. We train for 200 epochs for 8 and 16
shots, 100 epochs for 2 and 4 shots, and 50 epochs for 1
shot (except ImageNet which is fixed at 50 epochs). The
learning rate for the first epoch is fixed at 1 × 10−5 . We
also use the same random resized crop transformations as
CoOp.

Cross-modal Adapter: We follow the same 2-layer
MLPs architecture in CLIP-Adapter [21] with a residual ra-
tio of 0.2. Specifically, the first linear layer downsizes the
input feature to 1

4 of the original dimension and the second
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linear layer transforms it back to the original dimension.
Each linear layer is followed by a ReLU function. Finally,
the transformed features are multiplied by 0.2 and added
with 0.8 * the original feature. We use a single adapter for
both image and text features. We perform a grid search of
learning rate in [1× 10−4 ,1× 10−5 ,1× 10−6 ,1× 10−7 ],
weight decay in [0.0, 0.001, 0.00001], and batch size is set
to 8. We do not adopt the cache-modal and training-free
initialization proposed in the follow-up Tip-Adapter [111]
method. Also, we notice that Tip-Adapter uses test set
to perform early stopping; we however strictly follow the
CoOp protocol to use the few-shot validation set for all hy-
perparameter searching.

ImageNet-ESC Experiments: For all linear probing ex-
periments on ImageNet-ESC, we perform a grid search of
learning rate in [0.1, 0.01, 0.001, 0.0001], weight decay in
[0.0, 0.01, 0.0001], and batch size is 8.
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10. Additional Results

In this section, we present all the results with standard
deviation over multiple runs. Here is an overview (please
refer to table captions for more discussion):

1. Per-dataset results for all methods: We show Fig-
ure 6 and Table 10. In particular, we note that
cross-modal adaptation consistently outperforms prior
methods across a wide variety of visual recognition
datasets, further strengthening our claim that our ap-
proach should be the de-facto adaptation method for
finetuning multimodal models.

2. Ablation for augmentation techniques: In Table 11,
we show the performance of all combinations of image
and text augmentation techniques. Importantly, simple
text augmentation strategies work very well for visual
recognition.

3. Ablation for classifier initialization: In Table 12, our
experiments suggest that (a) text-based initialization is
beneficial for both linear and partial finetuning, and (b)
cross-modal adaptation can improve the performance
regardless of the initialization.

4. Ablation for partial finetuning: In Table 13, we con-
firm that partial finetuning of the image encoder is
more effective than finetuning the text encoder.

5. Complete results for all reported methods: In Ta-
ble 14, we show the standard deviation for all meth-
ods reported in the main paper and appendix, including
ViT-based encoder results.

6. Complete Results on ImageNet-ESC benchmark:
We show the complete results on ImageNet-ESC-19
and ImageNet-ESC-27 for both image-classification in
Table 15 and audio-classification in Table 16. We addi-
tionally include the results of the text-based classifier
and cross-modal linear probing with all three modal-
ities (including text) for reference. Including the text
modality seems to be the most performant, which is
expected since the benchmark is curated based on tex-
tual information, i.e., matching label names. We also
note that just adding text modality is better than in-
cluding all three modalities; we believe this issue can
be alleviated with better alignment between the image
and audio representations, e.g., scaling the pre-training
data for AudioCLIP. Furthermore, the standard devia-
tions of the experiments are higher than those of the
vision-language adaptation experiments because the
randomly sampled one-shot sample can make a huge
difference in the performance. However, cross-modal
adaptation is more performant not by chance – in more

than 75% of the experiments, adding the one-shot-
audio or one-shot-image to the same set of samples can
outperform uni-modal linear probing.

7. Comparison to ProDA [63]: In Table 17, we com-
pare to ProDA, another promising SOTA method that
does automatic prompt ensembling with 36 learned
templates. We are told by the authors that they do not
follow the dataset split given by CoOp [113], and use
the official test split of each dataset whenever possi-
ble or sample their own test split from the train set.
Therefore, we cannot directly compare to their perfor-
mance since CoOp [113] use their own test split for
most datasets and ProDA does not release the code yet.
In particular, official test sets exist for two of the target
datasets (Food101 [6] and DTD [14]). We therefore
switch to the official test split for these two datasets
and use the CoOp’s split for the rest of the 9 datasets in
Table 17 as our best attempt to compare to ProDA [63].
Note that ProDa also does not report the use of a few-
shot validation set. In conclusion, our approach is still
more performant than theirs under most scenarios with
significantly fewer training resources.

8. 180 templates used for mining: In Table 18, we show
the pool of templates we use when mining based on
few-shot validation set performance.
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Figure 6. Comparison of few-shot learning results across 11 datasets. We show our main methods (cross-modal linear probing and
partial finetuning) and compare them with prior works. We note that the Tip-Adapter [111] numbers shown are our own re-run of the
method, where we replace their early-stopping on the test set with early stopping on the few-shot validation set for a fair comparison. As
seen in the plots, cross-modal partial finetuning consistently outperforms prior works across the datasets, and cross-modal linear probing
is also generally more performant.
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Method Shots
Dataset

Caltech [55] ImageNet [15] DTD [13] EuroSAT [34] Aircraft [65] Food [7] Flowers [72] Pets [76] Cars [51] SUN397 [103] UCF101 [93] Average

Zero-Shot CLIP 0 86.29 58.18 42.32 37.56 17.28 77.31 66.14 85.77 55.61 58.52 61.46 58.77

CoOp

1 87.53 57.15 44.39 50.63 9.64 74.32 68.12 85.89 55.59 60.29 61.92 59.77

2 87.93 57.81 45.15 61.50 18.68 72.49 77.51 82.64 58.28 59.48 64.09 62.32

4 89.55 59.99 53.49 70.18 21.87 73.33 86.20 86.70 62.62 63.47 67.03 66.77

8 90.21 61.56 59.97 76.73 26.13 71.82 91.18 85.32 68.43 65.52 71.94 69.89

16 91.83 62.95 63.58 83.53 31.26 74.67 94.51 87.01 73.36 69.26 75.71 73.42

Tip-Adapter

1 87.90± 0.75 60.87± 0.04 48.58± 0.63 51.81± 2.45 20.06± 0.39 77.27± 0.39 76.70± 0.28 86.44± 1.35 58.42± 0.47 62.40± 0.27 65.38± 0.29 63.26± 0.68

2 89.40± 0.22 61.54± 0.01 51.64± 0.58 66.32± 2.06 21.17± 0.62 77.44± 0.07 79.50± 1.07 86.44± 0.44 61.06± 0.41 63.22± 0.62 67.45± 1.77 65.93± 0.72

4 90.78± 0.16 62.48± 0.01 57.21± 0.33 69.23± 2.85 24.97± 0.84 77.20± 0.43 89.00± 0.44 86.45± 0.71 64.54± 0.38 65.75± 0.15 71.17± 0.36 68.98± 0.61

8 91.10± 0.18 63.94± 0.16 61.92± 0.83 77.69± 2.45 28.13± 1.06 78.36± 0.12 92.40± 0.24 88.11± 0.42 69.32± 0.08 68.28± 0.34 74.42± 0.72 72.15± 0.60

16 92.28± 0.66 65.18± 0.15 66.23± 0.79 81.96± 2.26 34.83± 0.92 79.05± 0.26 93.90± 0.68 89.13± 0.28 75.08± 0.23 71.27± 0.13 77.24± 0.3 75.10± 0.61

ProGrad

1 88.68± 0.34 57.75± 0.24 46.14± 1.74 56.32± 3.04 18.81± 0.50 76.04± 0.54 73.18± 0.73 88.36± 0.73 58.38± 0.23 60.54± 0.24 64.55± 0.50 62.61± 0.80

2 87.98± 0.69 59.75± 0.33 49.78± 1.37 63.10± 3.77 20.47± 0.90 74.95± 0.57 79.77± 0.65 86.89± 0.42 61.81± 0.45 63.06± 0.11 66.35± 0.18 64.90± 0.86

4 89.99± 0.26 61.46± 0.07 54.43± 0.86 72.53± 1.29 23.32± 0.36 75.95± 0.27 85.37± 0.96 88.04± 0.50 65.62± 0.43 66.39± 0.43 69.86± 0.30 68.45± 0.52

8 90.83± 0.07 62.54± 0.03 60.69± 0.10 78.04± 2.45 27.02± 0.67 76.65± 0.23 91.64± 0.24 87.91± 0.54 69.29± 0.11 67.62± 0.28 73.33± 0.65 71.41± 0.49

16 92.10± 0.39 63.54± 0.08 63.87± 0.99 83.29± 0.85 30.25± 1.09 78.41± 0.08 94.37± 0.24 89.00± 0.32 73.46± 0.29 69.84± 0.18 75.38± 0.10 73.96± 0.42

Wise-FT

1 85.49± 0.81 58.30± 0.24 44.17± 0.72 52.30± 2.00 18.61± 0.54 71.88± 0.02 65.83± 0.54 81.73± 1.15 55.66± 0.15 56.59± 0.10 59.39± 1.33 59.09± 0.69

2 87.00± 0.68 59.08± 0.34 46.95± 0.27 57.07± 4.26 20.88± 0.36 73.54± 0.11 71.02± 0.94 82.75± 0.62 58.67± 0.15 60.15± 0.10 62.74± 0.67 61.80± 0.77

4 89.03± 0.17 60.48± 0.11 52.23± 0.70 62.45± 4.09 23.33± 0.38 76.17± 0.33 77.10± 0.50 85.95± 0.52 62.09± 0.35 63.18± 0.22 66.14± 0.46 65.29± 0.71

8 90.07± 0.34 61.85± 0.22 55.56± 0.50 71.40± 2.80 26.97± 0.28 76.72± 0.31 82.54± 0.34 86.52± 0.45 66.00± 0.47 65.25± 0.48 69.84± 0.33 68.43± 0.59

16 90.79± 0.15 62.84± 0.11 61.74± 0.61 77.79± 0.52 31.75± 0.46 77.80± 0.04 86.91± 0.71 87.50± 0.30 71.28± 0.20 67.46± 0.17 72.20± 0.03 71.64± 0.30

Cross-Modal Linear Probe

1 88.68± 0.17 60.19± 0.14 49.74± 0.24 59.54± 5.28 21.21± 1.37 75.10± 1.81 80.35± 0.22 84.54± 1.92 58.68± 0.17 62.13± 0.30 65.24± 0.36 64.13± 1.09

2 88.68± 2.04 60.56± 0.10 53.61± 2.36 65.23± 2.42 23.48± 0.56 77.27± 0.07 86.30± 0.94 85.25± 2.46 61.75± 0.29 64.79± 0.13 69.53± 0.74 66.95± 1.10

4 91.29± 0.51 61.48± 0.15 60.36± 0.46 72.72± 2.00 26.70± 0.48 77.27± 0.66 90.86± 0.15 87.60± 0.22 65.88± 0.06 67.03± 0.43 72.24± 0.35 70.31± 0.50

8 92.05± 0.09 62.44± 0.08 62.96± 0.12 79.21± 2.13 31.19± 1.45 78.38± 0.19 93.88± 0.50 87.84± 0.65 69.76± 0.63 69.03± 0.16 75.86± 0.37 72.96± 0.58

16 92.86± 0.20 64.51± 0.05 67.43± 1.51 84.91± 0.27 37.58± 0.82 78.57± 0.54 96.16± 0.19 88.76± 0.32 75.49± 0.36 70.92± 0.03 78.47± 0.12 75.97± 0.40

Cross-Modal Wise-FT

1 88.61± 0.15 60.90± 0.22 48.17± 0.17 55.09± 7.22 20.62± 0.44 77.05± 0.19 77.18± 1.70 86.54± 0.56 59.10± 0.40 62.47± 0.32 65.65± 0.55 63.76± 1.08

2 88.56± 1.95 61.77± 0.16 51.83± 0.66 64.33± 3.76 21.88± 0.30 77.62± 0.21 81.84± 0.19 87.01± 0.12 62.24± 0.33 64.19± 0.63 69.11± 0.92 66.40± 0.84

4 89.94± 0.23 62.45± 0.13 56.23± 0.98 72.22± 2.18 24.11± 0.14 78.25± 0.09 85.46± 0.99 87.99± 0.22 65.31± 0.87 65.61± 0.57 70.88± 0.20 68.95± 0.60

8 91.36± 0.27 63.44± 0.14 60.15± 2.36 76.92± 3.75 28.59± 2.21 78.60± 0.17 90.72± 0.97 88.53± 0.22 68.57± 1.41 67.42± 0.61 74.83± 1.18 71.74± 1.21

16 92.48± 0.32 65.15± 0.05 63.87± 2.27 79.96± 1.76 33.86± 2.14 78.94± 0.38 91.65± 0.26 89.38± 0.21 73.64± 0.66 68.92± 0.57 77.12± 0.56 74.09± 0.83

Cross-Modal Adapter

1 89.03± 0.36 61.23± 0.12 47.24± 0.91 60.50± 4.04 21.04± 1.30 75.90± 1.66 80.63± 0.28 85.62± 0.71 59.00± 0.20 62.86± 0.24 65.30± 0.38 64.40± 0.93

2 89.36± 1.20 61.85± 0.01 54.51± 1.55 66.08± 1.67 23.58± 0.62 77.53± 0.20 85.69± 0.22 86.89± 0.23 62.22± 0.53 65.46± 0.26 70.12± 0.68 67.57± 0.65

4 91.33± 0.23 62.98± 0.10 60.03± 0.53 73.46± 2.67 27.55± 0.47 77.92± 0.63 90.81± 0.28 87.76± 0.12 66.40± 0.87 67.63± 0.37 72.67± 0.04 70.78± 0.57

8 92.08± 0.02 63.71± 0.06 64.11± 0.91 78.83± 2.66 32.75± 0.14 78.83± 0.14 93.57± 0.19 87.79± 0.11 70.29± 0.45 68.61± 0.52 76.34± 0.49 73.35± 0.52

16 92.98± 0.14 64.72± 0.19 67.51± 1.32 82.15± 1.92 38.80± 1.06 79.14± 0.44 95.57± 0.11 88.64± 0.16 75.96± 0.62 70.91± 0.33 78.91± 0.14 75.94± 0.58

Cross-Modal Partial Finetuning

1 89.10± 0.36 61.55± 0.45 49.92± 0.76 61.84± 5.16 20.56± 0.21 77.14± 0.70 76.25± 0.42 85.72± 0.72 58.96± 0.15 63.38± 0.27 66.80± 0.18 64.66± 0.85

2 89.97± 0.28 62.64± 0.12 55.18± 1.77 68.48± 1.75 22.65± 0.72 78.19± 0.18 82.80± 0.34 87.24± 0.99 61.19± 0.36 65.81± 0.34 70.34± 0.06 67.68± 0.63

4 91.30± 0.75 62.77± 0.47 60.68± 0.36 75.21± 2.10 25.58± 0.61 78.57± 0.15 88.66± 0.28 87.86± 0.73 64.49± 0.08 67.76± 0.51 73.61± 0.09 70.59± 0.56

8 92.20± 0.19 64.23± 0.11 64.72± 0.54 81.33± 1.61 33.87± 0.70 78.92± 0.21 93.50± 0.24 88.71± 0.34 69.06± 0.40 69.64± 0.08 77.50± 1.04 73.97± 0.50

16 93.52± 0.20 65.95± 0.04 68.91± 0.49 86.67± 0.72 43.60± 0.31 78.66± 0.85 95.72± 0.22 89.12± 0.32 75.45± 0.49 71.91± 0.05 79.95± 0.46 77.22± 0.38

Table 10. Per-dataset results on the ResNet-50 backbone. We also include results from prior works for easier comparison. We bold the
best result for each shot and each dataset, and underline the second best result. We see that cross-modal adaptation methods consistently
produce the best performance across almost all dataset. The Tip-Adapter results are reproduced using only the few-shot validation set for
hyperparameter searching and early stopping.
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Finetuning ImageAug TextAug Number of shots

1 2 4 8 16

Linear

CenterCrop (1 view)

N/A (Uni-Modal Adaptation)

36.58(1.47) 48.85(1.43) 58.87(0.82) 66.46(0.74) 71.63(0.50)
+Flip (2 views) 37.51(1.46) 49.43(1.59) 59.37(0.74) 66.65(0.64) 71.83(0.54)

+RandomCrop (2 views) 37.74(1.47) 49.21(1.46) 59.23(0.82) 66.70(0.60) 71.94(0.54)

+RandomCrop (10 views) 37.76(1.20) 49.25(1.14) 59.13(0.92) 66.52(0.59) 71.89(0.49)

CenterCrop (1 view)

Class name 61.78(1.17) 65.34(0.79) 68.98(0.67) 72.01(0.57) 74.91(0.59)
a photo of a {cls}. 63.22(1.37) 66.18(0.74) 69.73(0.53) 72.51(0.71) 75.29(0.62)

Hand Engineered 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)
Template Mining (21 views) 63.50(1.33) 67.21(0.80) 70.26(0.65) 73.07(0.63) 75.73(0.54)

+Flip (2 views)

Class name 61.84(0.79) 65.32(1.15) 69.25(0.52) 72.32(0.56) 75.27(0.49)
a photo of a {cls}. 63.36(0.84) 66.42(1.20) 69.88(0.62) 72.73(0.71) 75.53(0.49)

Hand Engineered 64.13(1.09) 66.95(1.10) 70.31(0.50) 72.96(0.58) 75.97(0.40)

Template Mining (21 views) 63.88(1.21) 67.19(0.97) 70.32(0.70) 73.10(0.57) 75.70(0.59)

+RandomCrop (2 views)

Class name 61.47(1.27) 65.09(1.20) 68.94(0.64) 72.06(0.76) 75.12(0.59)
a photo of a {cls}. 63.32(1.14) 66.05(0.92) 69.93(0.63) 72.91(0.53) 75.67(0.50)

Hand Engineered 63.71(1.50) 66.75(0.83) 70.19(0.51) 72.84(0.60) 75.83(0.59)
Template Mining (21 views) 63.68(1.75) 67.14(0.80) 70.53(0.53) 72.98(0.67) 75.75(0.49)

+RandomCrop (10 views)

Class name 61.52(1.18) 65.37(0.82) 68.85(0.77) 72.12(0.72) 75.02(0.63)
a photo of a {cls}. 63.35(1.04) 66.45(0.73) 69.52(0.78) 72.69(0.55) 75.44(0.72)

Hand Engineered 63.85(1.35) 66.87(0.82) 70.19(0.50) 72.98(0.59) 75.62(0.51)
Template Mining (21 views) 63.90(1.35) 67.00(0.86) 69.94(1.02) 73.04(0.69) 75.75(0.54)

Partial

CenterCrop (1 view)

N/A (Uni-Modal Adaptation)

29.93(2.37) 42.63(0.83) 54.27(1.06) 64.16(0.81) 71.62(0.56)
+Flip (2 views) 31.68(1.19) 43.61(1.08) 55.15(0.77) 64.90(0.87) 72.19(0.44)

+RandomCrop (2 views) 31.01(1.39) 43.78(1.09) 55.16(0.79) 64.91(0.93) 72.03(0.44)
+RandomCrop (10 views) 31.46(1.41) 43.76(1.07) 55.23(0.79) 64.74(0.78) 72.15(0.41)

CenterCrop (1 view)

Class name 62.50(1.34) 65.66(0.84) 69.33(0.86) 72.93(0.47) 76.21(0.41)
a photo of a {cls}. 63.78(1.07) 66.79(0.68) 69.80(0.75) 73.40(0.43) 76.67(0.35)

Hand Engineered 64.27(0.96) 67.14(0.58) 70.26(0.55) 73.53(0.51) 76.53(0.48)
Template Mining (21 views) 64.57(0.81) 67.21(0.67) 70.24(0.89) 73.71(0.58) 76.86(0.32)

+Flip (2 views)

Class name 62.52(1.27) 66.02(0.86) 69.64(0.65) 73.30(0.59) 76.44(0.45)
a photo of a {cls}. 64.13(0.97) 67.16(0.64) 69.97(1.22) 73.83(0.44) 77.03(0.39)

Hand Engineered 64.66(0.85) 67.68(0.63) 70.59(0.56) 73.79(0.50) 77.22(0.38)

Template Mining (21 views) 64.59(1.02) 67.58(0.74) 70.58(0.82) 74.00(0.49) 77.16(0.33)

+RandomCrop (2 views)

Class name 62.31(1.78) 65.77(0.77) 69.52(0.70) 73.21(0.49) 76.52(0.39)
a photo of a {cls}. 63.72(1.09) 66.99(0.52) 69.89(1.14) 73.63(0.55) 76.94(0.37)

Hand Engineered 63.64(1.54) 67.35(0.69) 70.50(0.69) 73.96(0.48) 77.05(0.47)
Template Mining (21 views) 64.41(1.18) 67.36(0.75) 70.77(0.61) 73.94(0.53) 77.19(0.35)

+RandomCrop (10 views)

Class name 62.18(1.47) 66.01(0.64) 69.47(0.78) 73.27(0.46) 76.60(0.45)
a photo of a {cls}. 64.00(1.12) 67.08(0.64) 70.22(0.64) 73.70(0.51) 76.96(0.41)

Hand Engineered 64.12(1.38) 67.63(0.64) 70.58(0.59) 73.93(0.39) 77.13(0.38)
Template Mining (21 views) 64.57(1.00) 67.37(0.62) 70.86(0.54) 74.02(0.41) 77.27(0.38)

Table 11. Ablation for augmentation under vision-language adaptation. Salient conclusions: (1) Uni-modal adaptation is much worse
than cross-modal adaptation even when doing aggressive image augmentation to increase the number of views, e.g., 10 random crops. (2)
Doing both image augmentation and text augmentation can improve the results, but text augmentation has a more profound impact whereas
image augmentation saturates with a few views. (3) Simple template mining can be as competitive as manually selected templates (cf.
Table 18). Overall, we hope this preliminary investigation can encourage future work to explore more text augmentation strategies.
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Method Initialization Number of shots

1 2 4 8 16

Linear Probing Random 36.58(1.47) 48.85(1.43) 58.87(0.82) 66.46(0.74) 71.63(0.50)
Text 58.32(0.71) 61.39(0.74) 65.25(0.61) 68.54(0.58) 71.90(0.33)

Cross-Modal Linear Probing Random 48.37(1.58) 54.87(1.33) 61.98(0.84) 67.96(0.58) 72.32(0.50)
Text 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)

Partial Finetuning Random 29.93(2.37) 42.63(0.83) 54.27(1.06) 64.16(0.81) 71.62(0.56)
Text 60.79(1.53) 63.44(0.64) 66.51(0.60) 69.46(0.68) 72.67(0.54)

Cross-Modal Partial Finetuning Random 42.03(1.91) 50.85(1.20) 59.74(0.89) 66.98(0.90) 72.92(0.42)
Text 64.27(0.96) 67.14(0.58) 70.26(0.55) 73.53(0.51) 76.53(0.48)

Table 12. Ablation results for text-based vs random initialization for linear classifier weight. We perform diligent analysis to confirm
that initializing the linear classifier weights with text features is beneficial for the final performance. Still, cross-modal adaptation uniformly
boosts the performance no matter the method or initialization. The text-based initialization is also more important for partial-finetuning
than for linear probing, confirming the hypothesis [53] that a randomly initialized classifier will distort pre-trained features. Experiments
in this table use center crop as image augmentation and Tip-Adapter’s template as text augmentation for simplicity.

Image Encoder Text Encoder Number of shots

1 2 4 8 16

Frozen Frozen 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)
Finetune Attention Pooling Layer Frozen 64.13(1.29) 67.23(0.51) 70.44(0.55) 73.64(0.47) 76.65(0.44)

Frozen Finetune Last Transformer Layer 64.12(1.10) 67.41(0.79) 70.31(0.52) 72.12(0.38) 73.34(0.32)
Finetune Attention Pooling Layer Finetune Last Transformer Layer 64.09(1.28) 67.06(0.76) 70.38(0.57) 73.64(0.48) 76.68(0.39)

Table 13. Ablation results for partial-finetuning. Partial finetuning of the last layer of image encoder is much more effective than
finetuning the last layer of text encoder, suggesting that one may simply freeze the text encoder for few-shot vision-language adaptation.
Experiments in this table use center crop as image augmentation and Tip-Adapter’s template as text augmentation for simplicity.

Backbone Method Number of shots

1 2 4 8 16

ResNet50

WiSE-FT 59.09(0.69) 61.80(0.77) 65.29(0.71) 68.43(0.59) 71.64(0.30)
Cross-Modal WiSE-FT 63.76(1.08) 66.40(0.84) 68.95(0.60) 71.74(1.21) 74.09(0.83)
Cross-Modal Prompting 61.97(0.46) 64.91(0.48) 68.43(0.50) 71.39(0.59) 73.990.54)

Cross-Modal Adapter 63.84(1.28) 67.11(0.96) 70.71(0.49) 73.32(0.67) 75.89(0.54)
Linear Probing 36.58(1.47) 48.85(1.43) 58.87(0.82) 66.46(0.74) 71.63(0.50)

Cross-Modal Linear Probing 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)
Partial Finetuning 29.93(2.37) 42.63(0.83) 54.27(1.06) 64.16(0.81) 71.62(0.56)

Cross-Modal Partial Finetuning 64.27(0.96) 67.14(0.58) 70.26(0.55) 73.53(0.51) 76.53(0.48)

ViT-B/16

WiSE-FT 60.31(0.68) 62.27(0.72) 64.97(0.39) 67.03(0.44) 68.93(0.72)
Cross-Modal WiSE-FT 71.19(1.27) 73.45(0.79) 75.33(0.98) 77.91(0.85) 79.51(0.82)

Linear Probing 43.87(2.55) 56.84(1.45) 67.12(0.94) 73.77(0.69) 78.16(0.52)
Cross-Modal Linear Probing 71.21(1.13) 73.70(1.03) 76.78(0.48) 78.89(0.37) 81.07(0.30)

Partial Finetuning 35.44(3.49) 52.04(1.52) 65.50(0.99) 74.05(0.94) 79.58(0.53)
Cross-Modal Partial Finetuning 70.70(1.21) 74.70(0.84) 77.76(0.50) 80.19(0.34) 82.52(0.41)

Table 14. Complete results for all methods reported. Experiments in this table use center crop as image augmentation and Tip-Adapter’s
template as text augmentation. Furthermore, we include ViT-B/16 results for completeness.
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Dataset Method
Number of Image Shots

0 1 2 4

ImageNet-ESC-19

Image-Only Linear Probing - 68.00(4.17) 75.67(4.62) 83.05(2.52)
Image-Audio Linear Probing - 69.33(3.97) 76.66(4.32) 83.22(3.77)
Image-Text Linear Probing - 85.69(5.36) 86.94(2.41) 89.21(3.04)

Image-Audio-Text Linear Probing - 82.34(2.66) 84.08(1.95) 87.33(1.68)
Audio-initialized Classifier 36.74(9.36) - - -
Text-initialized Classifier 84.95(0.00) - - -

ImageNet-ESC-27

Image-Only Linear Probing - 60.13(3.97) 71.81(2.96) 79.01(2.50)
Image-Audio Linear Probing - 60.87(4.41) 73.32(2.46) 78.94(2.66)
Image-Text Linear Probing - 84.15(3.10) 85.17(2.48) 88.35(0.80)

Image-Audio-Text Linear Probing - 75.96(2.77) 79.81(1.95) 83.41(1.19)
Audio-initialized Classifier 30.37(7.13) - - -
Text-initialized Classifier 82.96(0.00) - - -

Table 15. ImageNet-ESC image-classification results.

Dataset Method
Number of Audio Shots

0 1 2 4

ImageNet-ESC-19

Audio-Only Linear Probing - 31.21(5.45) 41.11(5.12) 48.51(3.79)
Audio-Image Linear Probing - 35.74(4.85) 45.94(4.99) 51.59(3.40)
Audio-Text Linear Probing - 38.74(5.51) 50.09(3.45) 53.90(1.96)

Audio-Image-Text Linear Probing - 42.33(4.06) 49.32(4.67) 53.61(2.44)
Image-initialized Classifier 34.21(1.17) - - -
Text-initialized Classifier 38.16(0.00) - - -

ImageNet-ESC-27

Audio-Only Linear Probing - 28.20(3.26) 39.00(3.42) 47.13(2.71)
Audio-Image Linear Probing - 35.01(4.06) 43.51(3.47) 48.46(3.37)
Audio-Text Linear Probing - 36.76(5.54) 45.69(4.04) 50.56(2.19)

Audio-Image-Text Linear Probing - 36.06(5.36) 46.19(2.96) 50.79(2.49)
Image-initialized Classifier 29.00(0.84) - - -
Text-initialized Classifier 31.02(0.00) - - -

Table 16. ImageNet-ESC audio-classification results.
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Method Template Number of shots

1 2 4 8 16

ProDA [63] 36 Learned Templates 65.19 68.59 71.49 74.21 76.78

Linear

Class name 62.34(0.88) 65.75(1.31) 69.95(0.53) 73.29(0.72) 76.66(0.30)
a photo of a {cls}. 63.87(0.88) 66.59(1.40) 70.71(0.61) 73.75(0.62) 76.85(0.38)

HandEngineered [111] 64.52(1.43) 67.31(1.26) 70.97(0.51) 73.77(0.84) 77.21(0.41)
Template Mining (21 views) 64.37(1.38) 67.62(1.03) 71.00(0.70) 74.17(0.61) 77.15(0.47)

Partial

Class name 62.58(1.87) 66.46(0.81) 70.29(0.61) 74.22(0.51) 77.73(0.57)
a photo of a {cls}. 64.38(1.14) 67.48(0.67) 70.59(1.38) 74.68(0.45) 78.34(0.45)

HandEngineered [111] 65.01(1.17) 68.05(0.64) 71.10(0.67) 74.83(0.50) 78.60(0.40)

Template Mining (21 views) 64.89(1.16) 68.03(0.74) 71.04(0.97) 74.90(0.43) 78.37(0.40)

Table 17. Comparison to ProDA. Since ProDA uses their own separate test split without releasing the code, it is not directly comparable
to numbers reported in Table 1. Therefore, we reported results here with our best attempt to replicate their dataset split by using the official
test splits of the datasets when available (Food101 [6] and DTD [14]). Note that ProDA reported results using 36 learned prompts, whereas
our template mining only uses 21 templates searched on few-shot validation set without any learning. Since we do not know whether
ProDA uses augmentation, we report center crop results in this table. Still, our approach is generally more performant than ProDA and we
do not require deep finetuning which takes 100x training time.
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180 Templates (∗ indicates not in CoOp codebase)
{cls}∗ a tattoo of the {cls}. a video of the person {cls}.

a photo of a {cls}.∗ a photo of a person during {cls}. a example of a person {cls}.
a picture of this {cls}.∗ a photo of a clean {cls}. a photo of a small {cls}.

a photo of my {cls}.∗ a photo of a {cls} texture. a photo of the small {cls}.
that is a {cls} photo.∗ a bad photo of a {cls}. the {cls} in a video game.
a picture of a {cls}.∗ a video of the person during {cls}. a demonstration of a person {cls}.

a {cls} photo.∗ a drawing of the {cls}. a photo of one {cls}.
this is a {cls} photo.∗ a close-up photo of the {cls}. a video of a person using {cls}.
a photo of these {cls}.∗ a video of a person {cls}. a blurry photo of a {cls}.
a picture of my {cls}.∗ a good photo of a {cls}. a photo of a person practicing {cls}.

a {cls} picture.∗ a photo of a {cls} thing. a photo of a {cls}, a type of flower.
that is a {cls} picture.∗ a demonstration of the person practicing {cls}. a painting of a {cls}.
a picture of those {cls}.∗ itap of a {cls}. a example of the person {cls}.
this is a {cls} picture.∗ a photo of a {cls} pattern. a example of the person performing {cls}.

that is a photo of a {cls}.∗ itap of the {cls}. a rendition of the {cls}.
a photo of your {cls}.∗ a demonstration of a person using {cls}. a cropped photo of a {cls}.

a picture of some {cls}.∗ a cropped photo of the {cls}. the origami {cls}.
a photo of those {cls}.∗ a example of the person practicing {cls}. a photo of the person {cls}.
a picture of these {cls}.∗ a bright photo of a {cls}. a example of the person doing {cls}.

{cls}, a picture.∗ a photo of the hard to see {cls}. a photo of the large {cls}.
a photo of an {cls}.∗ a photo of a person using {cls}. a example of a person doing {cls}.

a picture of the {cls}.∗ a rendition of a {cls}. a video of a person doing {cls}.
{cls}, a photo.∗ a demonstration of a person during {cls}. a sketch of the {cls}.

a photo of this {cls}.∗ graffiti of the {cls}. a photo of a nice {cls}.
a photo of the {cls}.∗ a toy {cls}. a good photo of the {cls}.

this is a photo of a {cls}.∗ a jpeg corrupted photo of the {cls}. a photo of a person performing {cls}.
a picture of your {cls}.∗ a photo of the weird {cls}. a pixelated photo of the {cls}.

a photo of a {cls}.∗ a photo of a cool {cls}. a photo of the dirty {cls}.
a picture of that {cls}.∗ a video of the person practicing {cls}. a photo of my new {cls}.
a photo of some {cls}.∗ the plushie {cls}. a sculpture of the {cls}.
a photo of my {cls}.∗ a low resolution photo of a {cls}. a photo of the person doing {cls}.
a photo of the {cls}.∗ a photo of the person performing {cls}. a photo of a {cls}, a type of pet.
a photo of that {cls}.∗ the cartoon {cls}. a centered satellite photo of the {cls}.
a picture of an {cls}.∗ a video of a person practicing {cls}. a photo of the {cls} texture.

a photo of the {cls}, a type of aircraft. a photo of a {cls}, a type of aircraft. a photo of a hard to see {cls}.
a bad photo of the {cls}. a photo of the person using {cls}. a black and white photo of a {cls}.
a photo of my dirty {cls}. a centered satellite photo of {cls}. itap of my {cls}.

a example of a person during {cls}. a example of a person performing {cls}. a video of the person doing {cls}.
a demonstration of the person doing {cls}. a {cls} in a video game. a demonstration of the person performing {cls}.

a demonstration of a person performing {cls}. i love my {cls}! art of a {cls}.
a photo of the person practicing {cls}. a example of a person using {cls}. a black and white photo of the {cls}.

a photo of a large {cls}. a example of the person using {cls}. a photo of the clean {cls}.
a photo of a weird {cls}. a jpeg corrupted photo of a {cls}. a photo of the nice {cls}.
a photo of a person {cls}. a blurry photo of the {cls}. a doodle of the {cls}.

a video of a person during {cls}. a painting of the {cls}. a close-up photo of a {cls}.
a photo of the {cls} thing. a sculpture of a {cls}. a low resolution photo of the {cls}.

the embroidered {cls}. a demonstration of the person using {cls}. a dark photo of a {cls}.
a photo of a {cls} object. a sketch of a {cls}. a video of the person performing {cls}.
a dark photo of the {cls}. a drawing of a {cls}. a photo of a dirty {cls}.

a photo of {cls}, a type of food. a photo of the {cls} pattern. a cartoon {cls}.
a example of the person during {cls}. a photo of the cool {cls}. the plastic {cls}.
a video of a person performing {cls}. a photo of the {cls} object. a photo of my clean {cls}.

a photo of many {cls}. a video of the person using {cls}. a photo of my old {cls}.
a photo of a person doing {cls}. a demonstration of the person during {cls}. a pixelated photo of a {cls}.

a plushie {cls}. a centered satellite photo of a {cls}. a demonstration of the person {cls}.
art of the {cls}. a tattoo of a {cls}. a doodle of a {cls}.

a photo of the person during {cls}. graffiti of a {cls}. the toy {cls}.
a bright photo of the {cls}. a demonstration of a person practicing {cls}. a plastic {cls}.

a rendering of a {cls}. a embroidered {cls}. a rendering of the {cls}.
a origami {cls}. a example of a person practicing {cls}. a demonstration of a person doing {cls}.

Table 18. Templates used during template mining. Most of the templates we use come from the original CoOp codebase [113]. In
addition, we add 31 random templates by paraphrasing [45] the standard template a photo of a {cls}. We encourage future work
to try out more sophisticated techniques to generate templates, e.g., through automated prompting [113] or with the help of language
models [45].
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