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Abstract with a transformation, and whether they preserve symme-

In this document we examine the effect that an image opera-
tion can have on the symmetries of an image distribution. We
show how an operation’s commutativity with a transforma-
tion can be used to predict how it will affect symmetries of a
distribution with respect to that transformation. We then use
this observation to analyze how operations such as Bayer de-
mosaicing, JPEG compression, and random cropping, affect
visual chirality, and show that our analysis accurately pre-
dicts the performance of deep networks trained on processed
data.

1. Introduction

A key goal of our work on visual chirality is to under-
stand how reflection changes what we can learn from image
data. We can think of this change as the difference between
two distributions: one representing the data, and the other
representing its reflection. In our main paper, we examine
this difference by training a network to distinguish between
samples drawn from each distribution. However, most image
data undergoes extensive processing before it even leaves
a camera, and it is easy to imagine how such processing
could introduce asymmetry that makes it trivial to distin-
guish between original images and their reflections. For
example, if a camera were to watermark every image with an
asymmetric pattern, then nearly any distribution of images it
produced would be chiral, even if the content of every image
(watermark aside) were perfectly symmetric. This leads to
an important question: when can we attribute visual chirality
to the visual world, and when might it instead be a conse-
quence of how we process images? To help answer this, we
develop a theory relating the preservation of symmetry in an
image distribution to the commutativity of image processing
operations with symmetry transformations.

We begin by reviewing different types of symmetry and
how they relate to data augmentation and machine learning
(Section 2). Next, in Section 3, we define what it means
for an operation to preserve symmetry, and derive various
relationships between the commutativity of such operations

tries with respect to that transformation. Then, based on
the theory we developed in Section 3, we introduce a sim-
ple technique that uses a small number of representative
samples from a distribution to quickly estimate whether an
imaging operation may introduce visual chirality into that
distribution (Section 4). In Section 5 we apply this technique
to common digital image processing operations, including
Bayer demosaicing and JPEG compression, to analyze the
effect that they have on visual chirality and learning. Finally,
in Section 6, we extends our analysis to consider random
cropping and show how it can sometimes be used to make
chiral operations achiral.

We say that an operation is chiral if it can map an achiral
(symmetric) distribution of images to a chiral (asymmetric)
one, and say that it is achiral if it preserves symmetry. Some
concrete results of our analysis include showing that Bayer
demosaicing and JPEG compression are each achiral for
certain image sizes and chiral for others, and that when
combined they are chiral for all image sizes. When either
is combined with random cropping individually it becomes
achiral. Finally, when demosaicing and JPEG compression
are both applied in combination with random cropping, the
resulting operation remains chiral.

Our theoretical and empirical results altogether suggest
that nearly imperceptible chiral traces may be left in photos
by non-commutative imaging pipelines, which has impli-
cations on self-supervised learning, image forensics, data
augmentation, etc.

2. Symmetry

We begin by reviewing what it means for a distribution
to be symmetric, and for that symmetry to be preserved
under different transformations. From this we will derive a
relationship between the commutativity of an operation with
a transformation, and the preservation of symmetries under
that transformation.

2.1. Terms & Definitions:

We first define the terms of our analysis abstractly and
with minimal assumptions to keep our conclusions as general



as possible. We assume the following are given:

e A distribution D : R™ — R over some elements.

o A symmetry transformation T : R™ — R", which we
assume to be invertible and associative.

e A second (processing) transformation, J : R" — R”,
being applied to the domain of D.

o A transformed distribution Dy : R™ — R obtained by
applying J to the elements of D:

Di(y)= ), D(x). (1)

xeJ~1(y)

These definitions intentionally omit assumptions that hold
only in the specific case of analyzing visual chirality; for
example, we do not assume that T is its own inverse, even
though this holds for horizontal reflection. However, it is
useful to remember how these abstract definitions apply to
the concrete case of visual chirality, where D is a probability
distribution over images, T is horizontal reflection, and J is
some kind of image processing operation. Dy then describes
the distribution associated with drawing images from D
and subsequently applying J ( i.e., the distribution of our
training data if we apply J to every training image). So if
X is a dataset of raw images that collectively approximate
the distribution D, and J is JPEG compression, then Dy
is the distribution approximated by J(X), which we get
by applying JPEG compression to every image in X. The
summation in Equation 1 accounts for the possibility that J
is non-injective, in which case |J~(y)| > 1 (i.e., J maps
multiple distinct inputs to the same output ). This is true, for
example, of any lossy compression like JPEG. In such cases,
the probability of a transformed element y is a sum over the
probabilities associated with all inputs that map to y. For
convenience, a summary of each term and its meaning in the
context of visual chirality is also given in Table 1.

2.2. Symmetry of Elements & Distributions

It is important to distinguish what it means for an in-
dividual element to be symmetric, and what it means for
that element to be symmetric under some distribution D.
We say that an element x is symmetric with respect to a
transformation T if:

x=Tx 2)

while symmetry with respect to T under some distribution
D is defined by the condition:

D(x) = D(Tx) 3)

Which makes the distribution D itself symmetric if and only
if Equation 3 holds for all x.

Importantly, Equation 3 can hold even when Equation 2
does not, meaning that asymmetric elements may still be
symmetric under the distribution D. In the context of com-
puter vision, this happens when an image and its reflection
are different (i.e., the image itself is not symmetric) but
share the same probability under D. On the other hand, as
equivalence implies equivalence under a distribution, the
symmetry of an individual element does imply symmetry
under D, making the symmetry of an element a sufficient but
not necessary condition for symmetry under a distribution.
This makes any distribution over exclusively symmetric el-
ements trivially symmetric; however, using T to augment
data drawn from such a distribution would not be especially
useful, as T would map every element to itself.

3. Symmetry Preservation

In order to reason about asymmetry in visual content
we need to understand how symmetry is affected by image
processing. In particular, we need to know whether a pro-
cessing transformation preserves symmetries in the original
data. Without this knowledge, we cannot be certain whether
asymmetries that we observe in images are properties of
visual content, or of how that visual content was processed.
Equations 2 and 3 describe two distinct types of symmetry;
the first relates two elements, while the second relates the
images of these elements in D. If we consider the effect
that an operation J will have on each type of symmetry, we
arrive at two different notions of what it means for symmetry
to be preserved. The first describes whether the symmetry of
individual elements is preserved. It is defined by applying
Equation 2 to both x and J(x):

[x =Tx] = [J(x)=TJI(x)] 4)

The second type of symmetry preservation describes whether
the symmetry of a distribution is preserved. It is defined by
applying J to Equation 3:

[D(x) =D(Tx)] = [Dj(x) =D;(Tx)] (5

Note that neither of Equations 4 and 5 implies the other.
For example, J will trivially preserve element symmetry
when applied to a domain that does not contain symmet-
ric elements, but can easily break distribution symmetry.
Likewise, we can break element symmetry while preserving
distribution symmetry by permuting a uniform distribution
of elements such that any symmetric element maps to a
non-symmetric element.

3.1. Commutativity & Element Symmetry

Our first type of symmetry preservation describes whether
elements that are symmetric with respect to T remain so
after applying J. We now show that this holds if and only



Term Definition

Meaning in Learning Applications

A distribution D D:R"—R

The underlying distribution our training data is drawn
from for some task.

A symmetry transformation T . .
y Ty invertible

T : R™ — R", is associative and

E.g., horizontal reflection, or any other associative and
invertible transformation to be used for data augmentation.

A processing transformation J . .
P & invertible

J : R"™ — R", does not have to be

Some combination of image processing operations, e.g.,
demosaicing and/or JPEG compression.

A transformed distribution Dy

DJ (Y) = erJ’l(y) D(X)

The distribution of training data after every element has
been transformed by J.

Table 1. Terms and definitions used in derivations.

if J commutes with T when applied to symmetric elements,
meaning:

[x=Tx] = [J(Tx)=TJ(x)] (6)

Proposition 1. J will preserve the symmetry of elements
with respect to T (Equation 4) if and only if T and J com-
mute on symmetric elements (Equation 0).

Proof. We start by showing that Equation 4 implies Equation
6. As equivalence implies equality under J, we have:

[x=Tx] = [J(x)=J(Tx)] (7

And combining the right sides of Equations 4 and 7 gives us
Equation 6. To show the other direction we start by applying
J to both sides of Equation 2 to get the right side of Equation
7. From here we use Equation 6 to commute T and J and
get Equation 4. This concludes the proof. [

Note this also means that, if J(Tx) # TJ(x), then J
must break the symmetry of x.

3.2. Commutativity & Element Mapping

Notice that Proposition 1 falls short of establishing gen-
eral commutativity of T and J; it only applies to elements
that are symmetric with respect to T. However, we can de-
rive a stronger relationship related to general commutativity
by considering whether J preserves the mapping of elements
defined by T. To see this, note that T defines a map from
each element x, to another element x;, where:

xp = Tx, ¥

We can think of Equation 8 as relaxing Equation 2 to include
asymmetric elements, for which x, # x;. We can then
define the preservation of this mapping by J as:

[xp = Txa] = [J(x3) = TI(x4)] ©)

From here, we can derive a stronger claim related to
general commutativity.

Proposition 2. J preserves the mapping established by T
(Equation 9) if and only if J commutes with T.

Proof. We start by showing that Equation 9 implies com-
mutativity. As equivalence implies equality under J, we
have:

[xp = Tx,] = [J(xp) = J(Tx,)] (10)

And combining the right sides of Equations 9 and 10 gives
us TJ(x,) = J(Tx,). To show that commutativity implies
Equation 9, we start by applying J to both sides of Equation
8 to get the right side of Equation 10

[xp = Tx,] = [J(xp) = J(Tx,)] (11)

From here we commute T and J on the right side to get
Equation 9. This concludes the proof. O

From this we can also conclude that if J does not com-
mute with T then there must be some pair of elements x,, Xp
such that Equation 9 does not hold.

3.3. The Symmetry of Distributions

We have shown that commutativity implies the preserva-
tion of element symmetry. Now we show that it also implies
the preservation of distribution symmetry. This is a bit more
complicated than the element case. Our approach, based on
group theory, is to show that when J commutes with T, J
maps between disjoint cyclic groups generated by T'.

Proposition 3. If J commutes with T and a distribution
D is symmetric with respect to T, then the transformed
distribution D 3 will also be symmetric with respect to T.

Proof. We first show that J defines a mapping between dis-
joint cyclic subgroups. We then show that this map is a ho-
momorphism, which we use to relate D(x) to Dy (T(x)).

Since T is associative and invertible, we can use it to
partition our domain into disjoint cyclic subgroups (x;)T
generated by T

(x)T = {.., T %y, %, Tx, T2x, T3%4, ..} (12)



where the identity element x; of each group can be chosen
as any arbitrary element within the group. We refer to the
set of such group generators as Gr. The group operation -
can be thought of as a permutation of each specific cyclic
group relative to its identity element:

T, - T’x; = T x; (13)

As each such subgroup shares the same group operation and
is closed under that operation, any two (x;)T must either be
equivalent or disjoint. The order |(x;)T| of each subgroup
depends on the symmetries of x; with respect to T. For
example, if T is simple reflection about a particular axis
then |(x;)T| = 1 for images x; that are symmetric about that
axis, and |(x;)T| = 2 for images that are asymmetric about
that axis.

Now consider how J transforms each of the subgroups

(xi)™:

J(x)T = {.IT 'x;, Ix;, ITx;, IT?x4,...}  (14)
If J commutes with T, we can rewrite the above as

J(x;)T = {. T x;, Ix;, TIx;, T2 Ix;,...}  (15)

giving us
J<XZ‘>T = <JX7;>T (16)

This shows that J maps cyclic subgroups generated by T to
cyclic subgroups that can be generated by T.

Symmetry with respect to T can be restated as the con-
dition that all elements within common cyclic subgroups
generated by T share the same probability. In other words,
for each cyclic subgroup (x;)7T, all elements of the subgroup
have the same probability under D, i.e., all elements have
probability D(x;). It is therefore sufficient for us to show
that the map J : (x;)T — (Jx;)T is a homomorphism,
as the first isomorphism theorem ensures the same number
of equal-probability elements from (x;)T will map to each
element of (Jx;)T.

Recall that a homomorphism h : G — H is defined by
the relation h(u - v) = h(u) - h(v). It is simple to show that
this holds for J and our cyclic subgroups when J commutes
with T

J(T%x; - T'x;) = J(T ;)
= T J(x;)
= TJ(x;) - T?J(x;)
= J(T%;) - J(Ttx;)

A7)

This is sufficient to prove our proposition. For completeness,
we also reformulate D in terms of the cyclic subgroups
(Jx;)T. We will use the notation 1)+ to denote an in-
dicator distribution that maps every element of (x;)T to 1,
and every other element to 0. Note that any distribution we

can represent as the weighted sum of 1)~ must preserve
symmetry with respect to T. We can express D as:

D= ) D(xi) Lx,)r (18)

x;€GT

Now, using the first isomorphism theorem to account for the
case where J is non-injective, we can combine Equation 1
and 18 to write Dy as

D; = (D(x;)[ker Ix;|) - 1(3x,yr (19)

i

where ker Jx; is the kernel of J : (x;)T + (Jx;)T.! This
concludes our proof. O

3.4. Permuted Commutativity

From Proposition 1 we can conclude that if J does not
commute with T when applied to some symmetric element
x then J(x) will not be symmetric with respect to T (this is
also simple to prove independently). However, our proof of
Proposition 3 is not bi-directional; we only show that com-
mutativity implies distribution symmetry will be preserved.
What, then, can we conclude about operations that do not
commute with T'?

The first thing to note is that non-commutativity does not
imply that distribution symmetry will be broken. There are
various ways for symmetry to be preserved even when J
and T do not commute, but here we consider a case where
groups of operations that do not commute with T individu-
ally combine to preserve distribution symmetry. For instance,
imagine that given a training set of images drawn from a
distribution D, and that we generate a new training set by
applying multiple random crops to each original image—we
can think of each different crop offset j as a different trans-
formation J; applied to the original distribution, and the
accumulation of all random crops to reflect a new, accumu-
lated distribution. As such, this accumulation of transformed
images is particularly relevant to computer vision, as it will
help us explain an effect that random cropping can have on
bias introduced by data augmentation.

We proved Proposition 3 by showing that J formed a ho-
momorphism between cyclic subgroups (x;)T and (Jx;)T.
We now consider the case where D is the sum of multiple
such homomorphisms J ;, as would result from accumulating
the results of multiple transformations J ;:

D;(x) = Z Z

7 xgdjxi=x

D(x;) (20)

In this case, the sum of symmetric distributions is a symmet-
ric distribution, which tells us that Dy will still be symmetric.

IRecall that the kernel of a homomorphism J, ker J, is the subset of
elements that J maps to the identity element.



Now note that by permuting the elements on the right side
of Equation 20, we can define a new set of transformations
that sum to the same D, ensuring that symmetry remains
preserved.

<Xi>T = X; TX,L T2Xi T2Xi

Gszi

J1<Xi>T = \
Jo(x)T = Jox, \ JoT%x;
J3<Xz‘>T = JgTij

Figure 1. Permuted Commutativity. We can permute the ele-
ments on the right side of Equation 20 to define a set of processing
transformations J; that may not commute with T, but in aggregate
still sum to a symmetric distribution. These J; are characterized
by a permuted commutativity relationship. In this example, that
relationship is given by TJ, = J, T, where a = k (mod 3) and
b=k+1 (mod 3).

This means that if we can find a permutation of J; such
that the aggregated transformed distribution still maintain
symmetric when TJ, = J,T for a and b are indices of a
found permutation (Figure 1). We define the commutativity
under a particular kind of permutation obtained from random
cropping, as glide commutativity.

4. Commutative Residuals

Propositions 2 and 3 establish a connection between the
commutativity of two operations (a processing operation and
a symmetry transformation), and the preservation of two
kinds of symmetries. Notably, commutativity guarantees
that the symmetry of a distribution under a transformation
is preserved. How do we apply this finding in practice on
a specific distribution of images and a specific processing
operation?

It can be difficult to model complex processing operations
like JPEG compression and Bayer demosaicing analytically,
and it may be the case that such operations commute with
a transformation when applied to certain inputs, and not
when applied to others. Furthermore, the impact of non-
commutativity is not binary: if we think of the asymmetries
introduced by an operation as some signal indicating, for
example, whether an image has been flipped, then it is useful
to consider the magnitude of that signal relative to variations
in the distribution that contains it. These concerns lead us
to derive a numerical measure of commutativity that we can
evaluate on representative samples of a distribution to gauge
the strength of assymmetries introduced by an operation. We
define Ez(x), the commutative residual image of operation J
with respect to transformation T on the image x, as follows:

E;(x) = J(T(x)) - T(J(x)) 2D

We can get a rough measure of the commutativity between
an imaging processing step and a transformation on some
representative samples x by looking at the value of |Ez(x)],
which we summarize by its average across all pixels, €3 (x).
We refer to €5 (x) as a commutative residual. A commutative
residual of O on a particular image x means that T and J
commute for that image, and a non-zero commutative resid-
uals means that they do not commute for that image. As the
derivations in Section 3 show, if the commutative residual is
0 for all elements of a distribution (i.e., the processing oper-
ation commutes with T'), the symmetry will be preserved. If
not, symmetries may be broken.

Commutative Residuals for Mirror Reflections. An al-
ternative intuition of commutative residuals can be arrived
at in the case where T is its own inverse, as is true of mirror
reflections. Consider the effect of J on a distribution rep-
resented by a dataset with two elements, D = {x, T(x)}.
This simple distribution is trivially symmetric, since D is
closed under T.

But what happens when we apply J? D becomes Dy =
{J(x),J(T(x))}, and we can measure the asymmetry of
this new distribution by taking the difference between one
element and the reflection of the other:

J(T(x)) = T(I(x)) (22)

which is precisely how we define the commutative residual
image above. Figure 2 shows an example computation of
a commutative residual image when T is image flipping
and J is the composition of Bayer demosaicing and JPEG
compression.

4.1. Evaluating the Chirality of Operations

We propose two methods to evaluate the chirality intro-
duced to an originally achiral distribution D by an operation
J. The first approach, based on the theory we have derived
about commutativity, is to evaluate the commutative residual
with respect to J on a small representative set of sample
images. The second method, as described in the main paper
in the context of analyzing real image datasets, is to train a
neural network to empirically distinguish between flipped
and unflipped images sampled from a much larger, symmet-
ric dataset after transforming every image in that dataset by
J. Since we are interested in demonstrating the possibility
of introducing chirality through low-level imaging operators,
we study image distributions that are originally symmetric
to ensure that any learned chirality cues can be attributed
solely to the effect of J.

5. Analysis of Demosaicing & JPEG Compres-
sion

With the theoretical tools derived in previous sections,
we evaluate two standard imaging processes: Bayer demo-



Figure 2. Example commutative residual image: This figure illustrates the application of the commutative residual method to a natural
image. Here T is the horizontal reflection operation, and J is the composition of Bayer demosaicing and JPEG compression. The image
used above has a width of 100px. For better visualization of the imperceptible differences shown in the residual image, we scale the resulting
residual by a factor of 10. Consistent with the results in Figure 4, the residual image is not zero (which would be all black), i.e., the

commutative residual is non-zero.

Figure 3. Example 8 x8 Bayer pattern mosaic: A typical Bayer
filter mosaic consists of tiled 2 x2 blocks of pixels with two green
filters and one red and one blue filter. Note that a even-sized Bayer
filter, like the one pictured, is asymmetric (mirror flipped version is
not equal to itself), while an odd-sized version of this filter pattern
would be symmetric.

saicing and JPEG compression. We analyze when these two
operations (and their composition) will preserve existing
symmetries in a distribution of images, and when they may
break them. In real camera systems, Bayer demosaicing and
JPEG compression are typically two operations in a much
larger image signal processing pipeline. We analyze these
two operations specifically because (a) they are ubiquitous
and implemented in most cameras, and (b) they have interest-
ing symmetry properties, as we will show below. We begin
with a brief summary of these two operations.

Bayer filters and demosaicing. Many modern digital cam-

eras (including cellphone cameras) capture color by means
of a square grid of colored filters that lies atop of the grid
of photosensors in the camera. An 8 x8 example of such a
color filter grid, known as a Bayer filter mosaic, is shown
in Figure 3. In such cameras, each pixel’s sensor measures
intensity for a single color channel (red, green, or blue),
and so to produce a full color image at full resolution, we
must interpolate each color channel such that each pixel ulti-
mately has an R, G, and B value. This interpolation process
is known as demosaicing. For our analysis we assume, as
is typical, that a Bayer filter mosaic pattern consists of a
tiled 2x2 element (GRBG in the case of Figure 3) and we
consider the demosaicing method of Malvar [2].

The 8x8 Bayer filter mosaic in Figure 3 has interest-
ing symmetry properties. The 8x8 pattern as a whole is
asymmetric—flipping it horizontally will result in a red pixel
in the upper-left corner, rather than a green pixel. The same
is true for any even-sized Bayer filter mosaic. However,
from the perspective of the center of any pixel, the pattern is
locally symmetric. Moreover, if we imagine a 9x9 version
of this mosaic (or indeed any odd-sized pattern), that mosaic
would be symmetric.

JPEG compression. JPEG is one of the most common
(lossy) image compression schemes. There are two main
ways that JPEG compresses image data. First, it converts
images into the Y'C},C; colorspace and downsamples the
chroma channels (Cy, and C,), typically by a factor of two.
Then it splits each channel into a grid of 8 x 8 pixel blocks
and computes the discrete cosine transform (DCT) of each
block. In the luminance (Y”) channel, each block covers an
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Figure 4. Commutativity residuals for demosaicing (left), JPEG compression (middle) and their composition (right): Each image
shows how commutativity residual, measured in absolute average percent error per pixel, varies with different image sizes. For integers n we
see commutativity in demosaicing at image widths of 2n — 1 (i.e., odd widths), and in JPEG compression at widths of 16n. We do not see

commutativity when both are applied.

8% 8 pixel region of the original image, while for the chroma
channels, each block corresponds to a 16x 16 pixel region
in the original image, due to the 2x downsampling. Finally,
the DCT of each block is strategically quantized to further
compress the data at low perceptual cost.

For the purposes of our analysis, one noteworthy aspect
of JPEG compression is that for images with dimensions
that are not a multiple of 16, there will be boundary blocks
that do not have a full 8 x8 complement of pixels. These are
handled specially by the JPEG algorithm, which can lead to
breaking of symmetry for such images because the special
boundary blocks are always at the right (and bottom) edges
of the image, never at the left (and top) edges.

5.1. Commutative Residuals and Image Size

As an initial experiment, we generate a completely ran-
dom image with random dimensions (i.e., choosing the width
and height uniformly at random from some uniform distri-
bution, and then selecting each value for each color channel
at random from the range [0, 255]). Then we compute com-
mutative residuals under the operations of (1) Bayer demo-
saicing (i.e., first synthetically generating a Bayer mosaic,
then demosaicing it), (2) JPEG compression, and (3) the
composition of these operations.

If we actually perform this experiment for randomly sized
images, then under demosaicing, commutative residuals are
nonzero about half of the time, and under JPEG compression,
they are nonzero over 90% of the time. But if we sample over
different image sizes more systematically, a pattern begins
to emerge.

Figure 4 visualizes commutative residuals for random
noise images as a function of image width and height for

the three operations described above. We can see that de-
mosaicing appears to commute with image flipping (and
therefore preserve symmetries) for images with odd widths,
while JPEG compression appears to preserve symmetries
for image with widths that are divisible by 16. Finally and
most notably, commutativity never seems to hold for the
composition of demosaicing and JPEG compression for any
width. We can explain this result by considering the geome-
try of Bayer patterns and JPEG block grids. Bayer patterns
(Figure 3) have horizontal symmetry when reflected about
any line centered on a pixel column, while the JPEG block
grid, which consists of 88 blocks that correspond to 8 x8
or 16x 16 blocks of the original image, is horizontally sym-
metric only around grid lines, which rest between columns
at 16-pixel intervals. A corollary is that the combination
of demosaicing followed by JPEG compression can never
be commutative with respect to flipping because these two
imaging processes never have zero commutative residual for
the same image width (since multiples of 16 are never odd).

The black-box analysis > of commutative residuals shown
in Figure 4 reveals the grid structures underlying these pro-
cessing algorithms, and illustrates how each grid structure
impacts preservation of symmetries. When the commutative
residual for any transformation for a given image width is
zero, we know that this transformation preserves the sym-
metry of the original distribution with such width. Hence, a
key result is that demosaicing followed by JPEG compres-
sion always yields asymmetric distributions for images of
arbitrary widths and heights even when the input distribu-

2 All analysis and experiments in this and the next section are avail-
able in Python at https://github.com/linzhigiu/digital_
chirality.
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Figure 5. A sample image from our Gaussian noise image dis-
tribution after different imaging operations. This image is of
size (100,100) and is generated using the Gaussian noise method
described in Section 5.1.

(d) Demosaicing + JPEG

tion of these images is symmetric. Since the combination
of these two operations is very standard in imaging pipelines,
we can expect results on synthetic data to apply to real im-
ages as well.

When the commutative residual is non-zero, we hypothe-
size that in practice symmetries will be broken, i.e., a non-
commutative imaging process will make an originally achi-
ral distribution chiral. To test this hypothesis, we trained
deep neural networks on three synthetic achiral distributions
of Gaussian noise images, corresponding to three different
square images sizes: one with odd width (99 x 99), one
with even width not divisible by 8 (100 x 100), and one
that is a multiple of 16 (112 x 112). To generate a sample
image from each distribution, for each pixel, we sample its
color value from a per-channel Gaussian distribution. The
mean of each color channel (in the range [0, 1]) was set to
(0.6,0.5,0.9) (for red, green, and blue, respectively), and the
standard deviation to (0.3,0.25,0.4). We use per-channel
means and standard deviations (rather than the same Gaus-
sian distribution for all channels) to reduce the source of
symmetries present other than symmetry with respect to T.
An example image from this distribution, before and after
each processing step, is shown in Figure 5.

If we apply each processing operation to all images from
these three distribution over three image sizes, our hypothe-
sis predicts that the operations will either preserve or break
achirality according to Table 2.

Imaging Operation Image size
99 100 112

Demosaicing A C C

JPEG c C A

Demosaicing+JPEG C  C C

Table 2. Predicted chirality of three (initially achiral) Gaus-
sian noise image distributions (corresponding to three differ-
ent square image sizes) under each of three processing schemes.
‘C’ means chiral, and ‘A’ means achiral. Explanation: 99px im-
ages should remain achiral under demosaicing, since the images
have odd size. 112px images should remain achiral under JPEG
compression since they have size divisible by 16. Everything else
becomes chiral as hypothesized. We verify this table empirically
by training network models on the nine distributions resulting from
these transformations.

We train a binary chirality prediction (flip/no-flip) net-
work using the same ResNet model as in the main paper (with
randomly initialized weights) for each of these nine datasets
(3 image sizes times 3 processing operations), with learning
rates obtained from log-scale grid searches. As predicted by
our hypothesis, trained network models can never achieve
more than 50% test classification accuracy on processed
distributions that our analysis suggests to be achiral (i.e.,
commutative residual is zero). And, intriguingly, our trained
network models achieve near perfect classification accuracy
on processed distributions resulting from non-commutative
imaging processes. This experiment hence gives empirical
evidence that non-commutativity of a processing operation
strongly suggests a loss of achirality.

Note that this analysis assumes that we use the whole
images after Bayer demosaicing and/or JPEG compression,
i.e., no cropping. These results nicely mirror the situation of
training networks on real images with no random cropping,
as described in the main paper. Figure 6 shows that networks
trained to classify chirality on resized (but not cropped) In-
stagram images often seem to focus on image evidence near
boundaries (first row), which we hypothesis is due exactly to
the kinds of chiral boundary artifacts discussed in this sec-
tion in the context of JPEG compression. On the other hand,
training with random cropping data augmentation yields net-
works that appear to focus on much more high-level features
(second row). In the next section, we discuss the interaction
of processing with random cropping (or image translation)
and how the addition of random cropping can either make a
chiral imaging process achiral, or can sometimes still intro-
duce chirality.

6. Random Cropping and Glide Symmetry

Because our analysis makes few assumptions about T, J
and D, we can apply it to other symmetries and data aug-



Bilinear Resizing

Random Cropping

Figure 7. Glide Symmetry: Human footprints often exhibit glide
symmetry. The infinitely repeating footstep pattern shown here is
equivalent to the reflection of a shifted version of itself.

mentation strategies used in computer vision. For example,
translational invariance is a common and useful prior in im-
ages that is often applied to data through the use of random
crops as a type of data augmentation. Here we consider how
our theory can be used to understand the effect of random
cropping on training.

6.1. Random Cropping as a Symmetry Transform

Doersch et al. [ 1] found that when they trained a network
to predict the relative position of different regions in an
image, it would sometimes “cheat” by utilizing chromatic
aberration for prediction. We can use our observation about
commutativity to explain this behavior by considering a
family of transformations in the 2D image plane. The self-
supervision task used in Doersch ez al. requires the network
to distinguish between different translations, which is only
possible when the following symmetry does not hold:

D(x) = D(Ty(x)), (23)

X

Figure 6. Class Activation Maps (CAM) resulting from two preprocessing procedures used in training ImageNet-pretrained models on the
chirality task: (top row) simple bilinear resizing and (bottom row) random cropping. Recall from the main paper that the CAM tends to fire
on discriminative regions for classification. Note the heavy focus on edge and corner regions on bilinear resized images, likely due to edge
artifacts caused by JPEG compression or demosaicing (or both). These artifacts disappear when random cropping is applied.

where T, is translation by some vector v € R2. Our com-
mutativity analysis tells us that this symmetry can be broken
by any J that does not commute (or glide commute) with
translation. This agrees with the findings of Doersch et al.
that the network was able to “cheat” using artifacts caused
by chromatic aberration, which is not translation-invariant,
as its effect is spatially varying.

6.2. Random Cropping as an Image Operation

If we revisit our analysis of commutative residuals under
an assumption of translation invariance, we can draw new
conclusions about the chirality of demosaicing and JPEG
compression. In particular, by incorporating translation in-
variance in the form of random cropping, we can change the
chirality of these operations by creating the kind of permuted
commutativity described in Section 3.4. In the case where
permuted commutativity happens among groups related by
translation, we call it glide-commutativity.

To test for glide-commutativity, we must look for the
permutation pattern described in Section 3.4. To do this, we
first define a way of phase-shifting T'(J(x)) and J(T(x)).
For this, we define JT,(x) and TJ4(x) as the process of:

1. Padding x with a large, constant number of pixels on
all sides.

2. Translating the padded image by ¢.

3. Applying T then J for JTy4(x), or J then T for
TJ(x).

4. Translating by T'(—4).
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Figure 8. Glide Commutativity Residuals for demosaicing (left), JPEG compression (middle) and their composition (right): Each
image shows the glide commutativity residual, measured in absolute average percent error per pixel, measured over different phase shifts.
For certain ¢; and ¢2 we see commutativity in demosaicing and in jpeg compression alone. We do not see commutativity when both are

applied.

5. Cropping out the previously padded pixels.

This has the effect of performing J and T as if the image
had occurred at a translation of ¢ from its original position.
For grid-based algorithms like demosaicing and JPEG com-
pression, this effectively phase-shifts the grid structure used
in the algorithm.

To test for glide-commutativity we simply look for some
repeating pattern of zeros in residuals of the form:

Es(x,61,02) = ITy, (x) = Tdg,(x) (24

This pattern of zeros describes the permutation pattern de-
scribed in Section 3.4. As the results in Figure 4 show, we
verified that the vertical components of ¢; and ¢ do not
matter. We therefore set them only to vary in the x dimension
of the image. Figure 8 shows the residuals calculated for
a range of phase shifts. We see that both demosaicing and
JPEG compression appear to be glide-commutative due to
the regular repeating pattern of zeros. However, the com-
bination of demosaicing and JPEG compression does not
appear to be glide-commutative, and we can see this is be-
cause zeros always occur at different phase shifts for each of
the two operations.

6.3. Empirical chirality in the presence of random
crops

The analysis from the previous section has simple impli-
cations (in terms of random cropping on images): (1) The
distribution of random crops (while avoiding cropping from
the boundary of 16 pixels) from an originally achiral distri-
bution of images that has undergone either demosaicing or
JPEG compression (but not both) should remain achiral. (2)

On the other hand, surprisingly, random crops (avoiding a
16-pixel margin around the boundary in the cropped image)
on that achiral distribution of images after both demosaicing
and JPEG compression may likely become chiral.

To verify this analysis empirically, we again train ResNet
models on the same achiral Gaussian distributions as intro-
duced in Section 5.1. Specifically, we take random crops of
size (512, 512) from the center (544, 544) of the (576,576)
Gaussian noise images to avoid possible boundary effects
from a 16-pixel margin. We train separate networks on each
of the three output image distributions obtained from apply-
ing each of the three imaging operations (demosaicing, JPEG
compression, and composition of demosaicing followed by
JPEG compression) on the initial Gaussian noise image dis-
tribution. Note that, as before, we perform a log-scale grid
search over learning rates.

The network training results show that neither demosaic-
ing nor JPEG compression alone is sufficient to produce a
chiral distribution under random cropping: models trained
with such images fail to achieve more than 50% accuracy.
This suggests that chirality is preserved when those oper-
ations are applied in isolation. But, as our theory predics,
when both operations are applied the image distribution be-
comes chiral: the trained network achieves 100% training
and test accuracy. This supports our theoretical analysis of
the glide-commutativity. Together, our analysis and empir-
ical study suggest that chiral traces are left in photographs
via the Bayer demosaicing and JPEG compression imaging
processes.



7. Conclusion

In this document we have developed theory relating the
preservation of symmetry by various operations to their com-
mutativity with corresponding symmetry transformations.
We proposed the commutative residual as a tool for ana-
lyzing symmetry preservation, and predicting how different
operations will affect the results of deep learning. We also
extend our theory to random cropping and show how to eval-
uate glide commutativity to detect permuted commutativity.
Our theoretical analysis and empirical experiment suggest
that when demosaicing and JPEG compression are applied
together, achiral distributions can becomes chiral, which
has implications on several areas, including self-supervised
learning, image forensics, data augmentation.
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