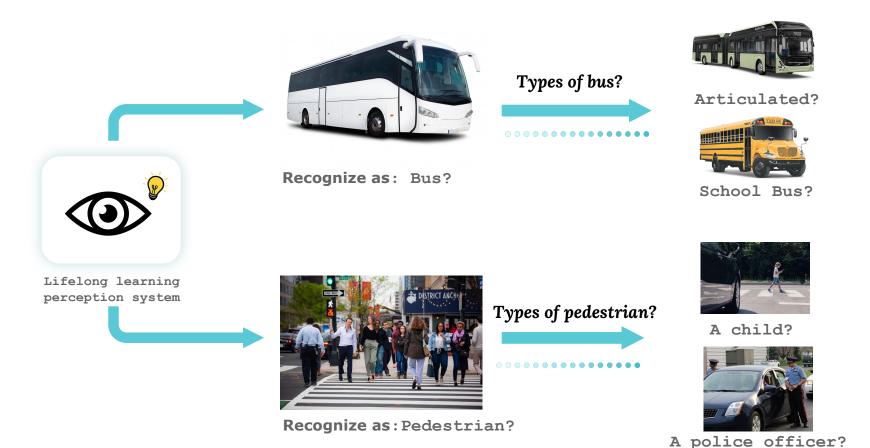


Learning with an Evolving Class Ontology

Zhiqiu Lin, Deepak Pathak, Yu-Xiong Wang, Deva Ramanan*, Shu Kong*

Visual perception systems need to cope with evolving class ontology..



Contemporary industry-made datasets, such as Mapillary[1] and Argoverse[2], continually refined the ontology from version 1.0 to 2.0.

Mapillary V1.2 (2017)

Mapillary V1.2 (2017)

66 classes

Mapillary V2.0 (2021)

Argoverse V1.0 (2019)

Argoverse BY ARGO AI

12 classes

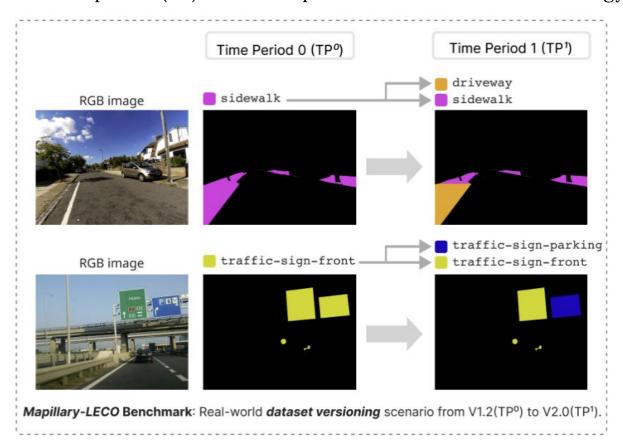
Argoverse V2.0 (2021)

Argoverse BY ARGO AI

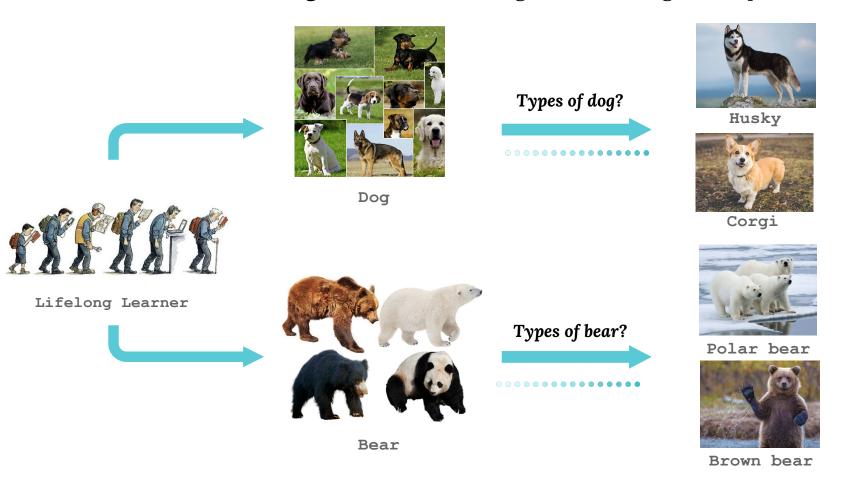
30 classes

2016 2018 2020 2022

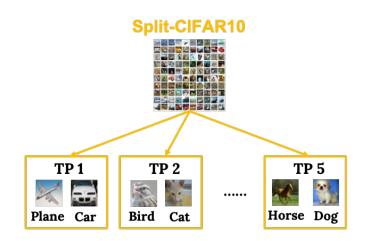
We study the problem of **LECO**: **L**earning with an **E**volving **C**lass **O**ntology. Each time period (TP) of a LECO problem refines the class ontology:



Humans, as **lifelong learners**, are also good at solving LECO problems.



Class-Incremental Learning (CIL) v.s. LECO

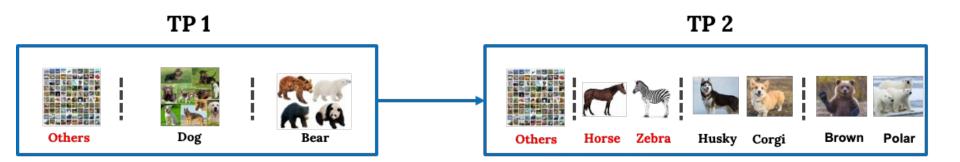


In CIL, classes are disjoint across TPs, i.e., having no relationship with each other.

LECO

In LECO, the newly added classes are always refined ones from last TP.

Class-Incremental Learning (CIL) v.s. LECO



Note: This **Others** class is sometimes called "**Unlabeled**" or "**Void**" in many datasets [1, 2].

- [1] The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In ICCV 2017.
- [2] The Cityscapes Dataset for Semantic Urban Scene Understanding. In CVPR 2016.

Class-Incremental Learning (CIL) v.s. LECO

In CIL:

- Training data from previous TPs will be **discarded**.
- Overall performance measured by testsets of previous + current TPs.

In **LECO**:

- **Keeping all history data** because storage is cheaper than annotation.
- Overall performance measured by the testset of current TP only.

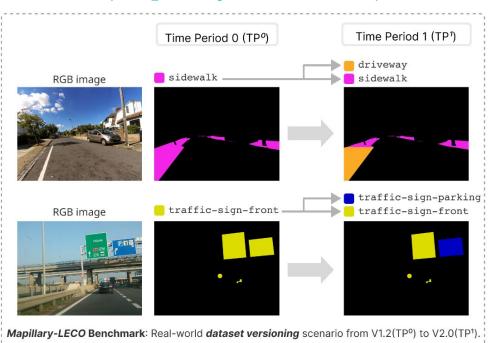
LECO targets at practical applications by preserving all data (without setting an artificial small replay buffer).

Learning with an Evolving Class Ontology

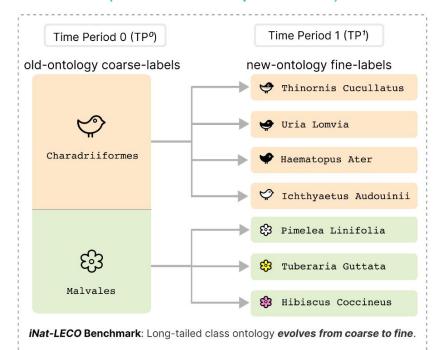
→ "LECO" benchmark for lifelong vision

Benchmark Construction

LECO-segmentation (Mapillary V1.2 -> V2.0)



LECO-classification (iNaturalist/CIFAR)



Mapillary V1.2 (2017)

Mapillary V2.0 (2021)

Same images, but relabeled! (RelabelOld)

Argoverse V1.0 (2019)

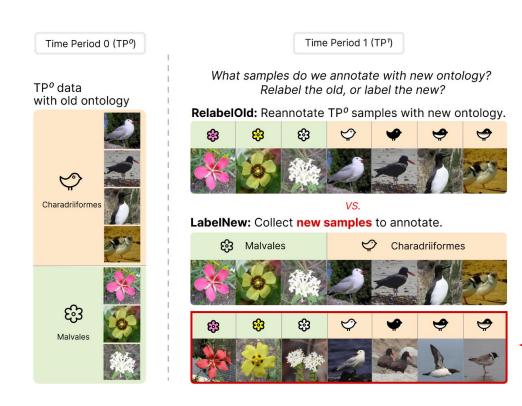
Argoverse BY ARGO AI

Argoverse V2.0 (2021)

Argoverse BY ARGO AI

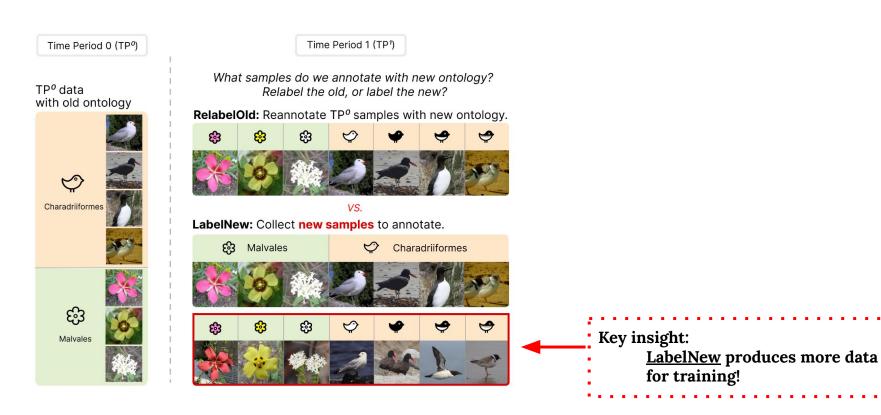
Collect new data to label! (LabelNew)

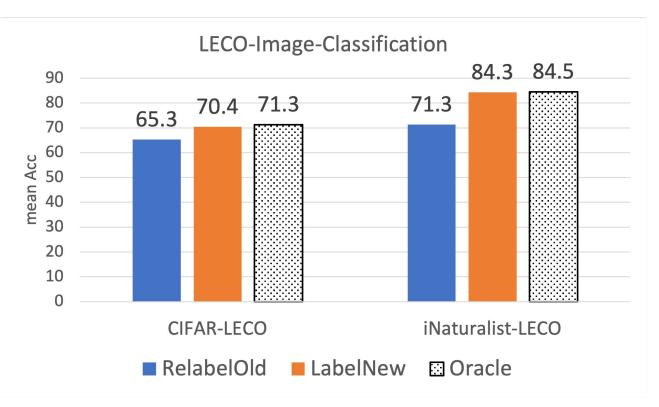
2016 2018 2020 2022



Key insight:

<u>LabelNew</u> will produce more data for training (though with inconsistent labels)





Takeaway: <u>LabelNew</u> produces a better classifier for training on more overall data.

LabelNew: Collect new samples to annotate.

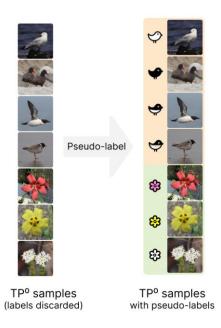
Our proposals:

- 1. Discard old-ontology labels and only use data.
- 2. Train on both coarse- and fine-grained labeled data.
- 3. Exploit the coarse-to-fine label hierarchy.

Proposal 1: Discard old-ontology labels and only use data.

⇒ Semi-supervised learning (SSL)

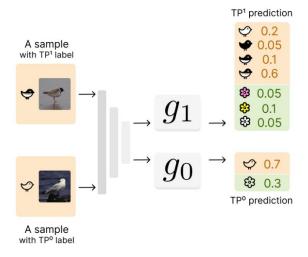
 \mathcal{L}_{SSL} : Utilize TP o samples



Proposal 2: Train on both coarse- and fine-grained labeled data.

⇒ Joint Training

 \mathcal{L}_{Joint} : Utilize both TP° samples and labels

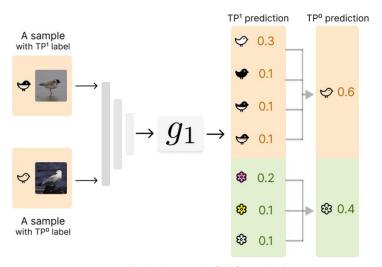


JointTraining with a two headed model

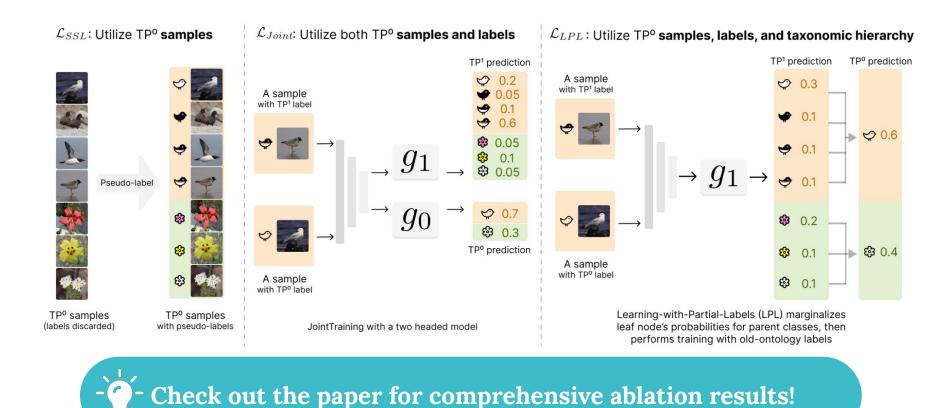
Proposal 3: Exploiting coarse-to-fine label hierarchy.

⇒ Learning-with-Partial-Labels (LPL)

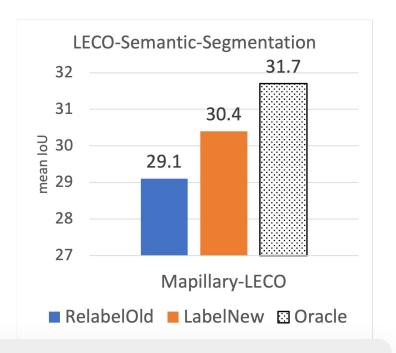
 \mathcal{L}_{LPL} : Utilize TP o samples, labels, and taxonomic hierarchy

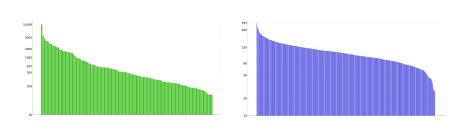


Learning-with-Partial-Labels (LPL) marginalizes leaf node's probabilities for parent classes, then performs training with old-ontology labels



Question 3: Do our proposals generalize to real-world scenarios?





Our solutions generalize to real-world LECO scenario (Mapillary) without given the label hierarchy.

We show consistent improvements under:

- Long-tailed distribution (Mapillary/iNaturalist)
- More than 2 TPs (iNaturalist)

Thank You!

